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I* (MODERN METRIC) CONVERSION FACTORS 

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with 
Section 4 of ASTM E380. (Revised March 2003). 

APPROXIMATE CONVERSIONS TO SI UNITS 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
in  inches 25.4 millimeters mm 
ft  feet 0.305 meters m 
yd  yards 0.914 meters m 
mi  miles 1.61 kilometers km 

AREA 
in2  square inches 645.2 square millimeters mm2 
ft2  square feet 0.093 square meters m2 
yd2  square yard 0.836 square meters m2 
ac  acres 0.405 hectares ha 
mi2  square miles 2.59 square kilometers km2 

VOLUME 
fl oz  fluid ounces 29.57 milliliters mL 
gal  gallons 3.785 liters L 
ft3  cubic feet 0.028 cubic meters m3 
yd3  cubic yards 0.765 cubic meters m3 

NOTE:  volumes greater than 1000 L shall be shown in m3 
MASS 

oz  ounces 28.35 grams g 
lb  pounds 0.454 kilograms kg 
T  short tons (2000 lb) 0.907 megagrams (or "metric 

ton") 
Mg (or "t") 

TEMPERATURE (exact degrees) 
oF  Fahrenheit 5 (F-32)/9 

or (F-32)/1.8 
Celsius oC 

ILLUMINATION 
fc  foot-candles 10.76 lux lx 
fl  foot-Lamberts 3.426 candela/m2 cd/m2 

FORCE and PRESSURE or STRESS 
lbf  poundforce  4.45  newtons N 
lbf/in2  poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 
mm  millimeters 0.039 inches in 
m  meters 3.28 feet ft 
m  meters 1.09 yards yd 
km  kilometers 0.621 miles mi 

AREA 
mm2  square millimeters 0.0016 square inches in2 
m2  square meters 10.764 square feet ft2 
m2  square meters 1.195 square yards yd2 
ha  hectares 2.47 acres ac 
km2  square kilometers 0.386 square miles mi2 

VOLUME 
mL  milliliters 0.034 fluid ounces fl oz 
L  liters 0.264 gallons gal 
m3  cubic meters 35.314 cubic feet ft3 
m3  cubic meters 1.307 cubic yards yd3 

MASS 
g  grams 0.035 ounces oz 
kg  kilograms 2.202 pounds lb 
Mg (or "t")  megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC  Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2  candela/m2 0.2919 foot-Lamberts fl 

FORCE and PRESSURE or STRESS 
N  newtons 0.225 poundforce lbf 
kPa  kilopascals 0.145 poundforce per square inch lbf/in2 
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Chapter 1 Overview 

The proliferation of data collected and stored from people and devices connected to the Internet is an 
important trend for businesses, individuals, and governments. Emerging data from travelers, vehicles, 
infrastructure, and other sources is expected to transform how agencies manage their transportation 
systems. The purpose of this project is provide agencies responsible for Transportation Systems 
Management and Operations (TSM&O) with an introduction to successful Big Data tools and 
technologies that can be used to aggregate, store, and analyze new forms of traveler-related data that 
may be useful for operations. In addition, this project will identify ways these collection, storage, and 
analytics practices can be integrated into the next generation of transportation management systems. 
 
The project is divided into four reports, which the reader is encouraged to consider together as a 
complete set. The first report (this document) provides a review of the state of the practice in Big Data 
tools and technologies and characterizes the nature of emerging data sources that will need these 
tools to be effectively used. The second report identifies specific use cases for these Big Data 
approaches across common TSM&O practices in light of the availability of the new data sources. The 
third report details some proposed aggregation and edge-processing schemes to reduce the burden 
of the Department of Transportation’s (DOT) Information Technology (IT) systems to consume and 
store all possible “raw” data, while retaining the maximum amount of information from the new 
sources. The fourth report then provides some recommendations on how these emerging sources 
and acquisition, processing, and analytics techniques can be integrated into future next generation 
transportation management systems. 
 
The purpose of this report (report #1 of the 4 listed above) is as follows: 

• Provide a summary of emerging data sources and their potential volumes relevant to TSM&O 
practices. 

• Provide an overview of the current state of the practice in IT tools and technologies in the 
“Big Data” space. 

• Raise awareness of TSM&O practitioners and IT professionals associated with TSM&O 
agencies of these coming trends and the order-of-magnitude challenges in data handling that 
this presents. 

 
The intended audience will be those practitioners with some IT experience, and those that wish to gain 
better awareness of IT issues in Big Data. As more travelers and vehicles become connected and 
new sources of information relevant to TSM&O emerge, new ways of acquiring, processing, and 
storing data will be required if the data is to be transformed into information and used to improve 
operational practice. 
 
Big Data is a term that typically is used loosely and in a nonspecific manner. This report provides 
some definitions and descriptions of current “big data” technologies and tools, which will help the 
reader to understand better what is “under the hood” of these Big Data systems. Information on the 
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predicted volumes of emerging sources is presented to indicate the scale of the data issues that could 
be expected for TSM&O agencies over the next 10 years. After reading this report, it will become clear 
to the reader that, if and when these data sources are made available for TSM&O purposes, the 
changes needed to DOT IT systems will be significant. The report also indicates the need for methods 
to preprocess much of the data before it is actually stored in DOT systems. Methodologies for this 
type of preprocessing will be discussed in report #3 of this project. 

This report addresses five principal questions: 

1. What are the categories of emerging data sources for TSM&O?

2. What will be the nature of these sources five and 10 years into the future (e.g., volume,
velocity, cost, availability)?

3. What are the current industry trends in big data?

4. What are leading commercial tools and functionality of systems designed for big data?

5. What are the existing computational platforms and technology and their relative costs and
capabilities?

The report is divided into six technical chapters. The first 
chapter reviews the common functions of TSM&O and 
provides a state-of-the-practice summary of how data and 
information currently are acquired, processed, stored, and 
analyzed. The second chapter identifies emerging data 
sources from connected vehicles (CV), connected 
travelers, and other sources relevant to TSM&O; and 
predicts the point(s) of access of these data to a DOT. 
Chapter 3 then characterizes each of the emerging sources by current and future volume and data 
velocity (the rate at which data is generated and the rate at which the data accumulates over time). 
The future data volumes are assessed at a national scale and at the scale of a “typical” agency. The 
data volumes for the national level are computed and presented only to assess the sheer scale. The 
remainder of the project will only consider requirements for solutions and technologies for 
management of the new information at regional scale. 

After reading this report, it will 
become clear to the reader that, if 
and when these data sources are 
made available for TSM&O 
purposes, the changes needed to 
DOT IT systems will be significant. 

Chapter 4 provides an overview of Big Data tools and technologies. “Big Data” as a buzzword means 
little without some concrete information describing the moving parts. Chapter 5 then introduces the 
reader to the popular and common platforms for ingesting, processing, and analyzing large volumes of 
information. Chapter 6 introduces cost models for commercial tools and platforms. 

This project builds upon previous work in this area, which are listed in the References section. These 
sources provide an excellent introduction to the subject of big data and what it could mean for 
transportation operations. (U.S. Department of Transportation, Intelligent Transportation System (ITS) 
Joint Program Office, “Big Data’s Implications for Transportation Operations:  An Exploration,” 
Publication No. FHWA-JPO-14-157, December 2014; McKinsey Global Institute, “Big Data:  The next 
frontier for innovation, competition and productivity,” May 2011. Accessed at:  
http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-
frontier-for-innovation.; Kimley-Horn and Associates, Inc., “Traffic Management Centers in a 
Connected Vehicle Environment,” Transportation Management Center (TMC) Pooled Fund Study, 
March 2014.; U.S. Department of Transportation, ITS Joint Program Office, “Big Data and ITS,” White 

http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation
http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation
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Paper, October 2013. Accessed at:  
http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final+Draft+1
0_2+%282%29.docm; International Transport Forum, “Big Data and Transport:  Understanding and 
assessing options, 2015.” Accessed at:  http://www.itf-oecd.org/big-data-and-transport-understanding-
and-assessing-options.) In addition, these references introduce the opportunities and challenges of 
using crowdsourced data for TSM&O, provide background details on the U.S. DOT Connected 
Vehicles program data architecture and standards, and identify Traffic Management Center 
(TMC)/TSM&O agency trends. The reader is encouraged to review these documents for additional 
background as this report seeks to expand on these sources with new material. (U.S. Department of 
Transportation, ITS Joint Program Office, “Estimate Benefits of Crowdsourced Data from Social 
Media,” Publication No. FHWA-JPO-14-165, February 2015; American Association of State Highway 
and Transportation Officials (AASHTO), “National Connected Vehicle Field Infrastructure Footprint 
Analysis,” Publication No. FHWA-JPO-14-125, June 2014.) 

 

http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final+Draft+10_2+%282%29.docm
http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final+Draft+10_2+%282%29.docm
http://www.itf-oecd.org/big-data-and-transport-understanding-and-assessing-options
http://www.itf-oecd.org/big-data-and-transport-understanding-and-assessing-options
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Chapter 2 State of the Practice of Data 
for Transportation Systems 
Management and Operations 

The purpose of this chapter is to characterize the state of 
the practice in use of data for Transportation Systems 
Management and Operations (TSM&O). This chapter 
introduces categories of activities that are performed by 
TSM&O agencies and the types of data that feed these 
activities. After reading this chapter, the reader will 
understand the types of agency activities and systems 
that may be enhanced by the use of emerging data 
sources that will be available over the next 10 years. The 
next chapter identifies categories of emerging data sources and estimates their likely point(s) of 
access to the Departments of Transportation (DOT). 

Chapter Objectives:
• Identify state of the practice in

using data for TSM&O activities. 
• Identify current limitations of

TSM&O practices and how 
emerging sources may enhance 
operations. 

The National Operations Center of Excellence (NOCoE) defines TSM&O as: 

“An integrated program to optimize the performance of existing infrastructure through the 
implementation of systems, services, and projects designed to preserve capacity and improve 
security, safety, and reliability of the transportation system. 

The term includes regional operations collaboration and coordination activities between transportation 
and public safety agencies; and improvements to the transportation system such as traffic detection 
and surveillance, arterial management, freeway management, demand management, work zone 
management, emergency management, electronic toll collection, automated enforcement, traffic 
incident management, roadway weather management, traveler information services, commercial 
vehicle operations, traffic control, freight management, and coordination of highway, rail, transit, 
bicycle, and pedestrian operations.” 

TSM&O is the active management of the multimodal transportation network by collecting data on 
system performance and making adjustments to real-time controls, information, and demand-
management strategies. TSM&O is not the implementation or construction of new facilities or 
rebuilding existing facilities and a variety of other functions of DOTs. Other functions of DOTs could 
very well be affected by new emerging data sources, including the data sources identified in this 
report, but are not discussed here. In addition, those additional DOT functions may very well be 
improved by application of the same data acquisition, marshalling, and analysis tools and platforms. 
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TSM&O practices that will likely be affected by the availability of new data include, but are not limited 
to, the following: 

• Incident and event management. 

• Road hazard warnings. 

• Speed warnings. 

• Traffic signal timing. 

• Freeway ramp metering. 

• Variable speed limits/recommendations and lane-use control strategies. 

• Dynamic message sign displays. 

• Work zone implementation. 

• Broadcasted and Personalized Traveler information. 

• Congestion pricing, road user fees, and tolls. 

• Performance measurement, including weather and emissions monitoring. 

• Asset management and maintenance. 

Data Sources of Today 
TSM&O organizations have been connecting to infrastructure to obtain information for operations for 
more than 40 years. All of the core missions of TSM&O organizations are supported by the collection 
of device status and sensor data. Connected infrastructure devices that provide data for TSM&O 
include traffic signals, ramp meters, Closed-Circuit Television (CCTV), vehicle detection stations, Road 
Weather Information Systems (RWIS), flood warning sensors, high wind warning sensors, and a 
variety of other specialty devices. Incident data is the other major existing source of information used 
by TSM&O agencies. Each of these devices and data sources for TSM&O will be discussed briefly in 
the following sections to identify existing limitations and opportunities. 

Traffic Signals 
Traffic signals are capable of reporting second-by-second status of every controllable phase and 
every detector connected to the signal for local operation and conditions monitoring. General signal 
status includes the operating mode, such as coordination, free, or flash; and more detailed alarms and 
specialty conditions, such as stop time, local manual, preemption, transit priority, cycle time, plan 
parameters, and pedestrian and bicycle activity. Traffic detectors come in a variety of forms, including 
in-pavement inductive loops, video, and radar. Typical information from detectors is the presence of a 
large metallic object within a certain region of the pavement at a certain time. This information is used 
in real time by the signal to indicate the need to turn the light green for a particular direction of travel, 
and keep it green to service the demand. There is much more complexity to traffic signal operations 
than is necessary to discuss here. 
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The main limitation of current data collection of traffic signals is that the information contains no 
indications of individual vehicles’ intent (where they came from or are going to) and vehicles that are 
not currently in a detector region are virtually invisible to the system. This becomes especially 
challenging in highly congested conditions when the signal, or signal system attempting to 
coordination operations of multiple intersections (on an arterial, for example), cannot know what the 
true demands are because the control algorithms cannot “see” past where their detectors are located. 
While there is a variety of sophisticated methods developed and used by current TSM&O 
organizations (generally characterized as Adaptive Signal Control Technology (ASCT)) to handle 
these situations, new data sources from connected vehicles and travelers can help to improve signal 
operations immensely.  Pervasive availability of data from connected vehicles and travelers may 
reduce agency burden for maintenance of sensors and associated systems. 
 
Currently, central systems typically collect and store this 
status information in a Relational Database Management 
System (RDBMS). Users of the central system can view 
real-time operations on maps and tabular displays, and 
many systems have detailed aggregation algorithms and 
tools for analyzing performance in various ways. The new 
emphasis on active performance management of signal 
operations has emerged over the past five to seven years 
through the Every Day Counts program, which focused on 
the adoption of ASCT. However, much of the data collected 
by traffic signal systems is simply deleted by the RDBMS 
after a specified number of days in order to maintain 
responsive database performance and for various other institutional reasons, such as the need to 
respond to records requests from accident-injury lawyers for data that is sufficiently “old.” There 
certainly is an opportunity to use this rich historical performance information in new ways to improve 
practice using new tools and technologies that are designed to handle large volumes and a large 
variety of data, even without any introduction of new data from connected vehicles, connected 
travelers, or other sources. 

 

There is certainly an opportunity to 
use this rich historical performance 
information in new ways to improve 
practice using new tools and 
technologies that are designed to 
handle large volumes and variety of 
data, even without any introduction 
of new data from connected 
vehicles, connected travelers, or 
other sources. 

Ramp Meters 
Like traffic signals, ramp meters are capable of reporting second-by-second status of every 
controllable lane and every detector connected to the signal for local operation and conditions 
monitoring. Ramp meters generally have detection zones on the freeway that are used to measure 
local conditions in order to set the rate at the ramp to a reasonable input level. When congestion is 
high on the freeway, metering rates are reduced; and when congestion is low, metering rates are 
increased (or the meter is turned off completely). Ramp meters also generally have queue detectors 
upstream of the stop line that are used to measure demand, as well as change operations to “flush the 
queue” if those detection zones are determined to have vehicles sitting in that location for extended 
periods of time. While ramp meters sometimes meet public opposition, they are proven to reduce 
crashes in the merging area and generally reduce congestion on the freeway. 

The main limitation of current data collection of ramp meters is similar to that for traffic signals. The 
information contains no indications of individual vehicles’ intent (where they came from or are going 
to), and vehicles that currently are not in a detector region are virtually invisible to the system. This 
becomes especially challenging in highly congested conditions when the ramp queue is large and the 
congestion on the freeway also is determined to be high. Sophisticated algorithms for setting ramp 
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metering rates in a corridor have existed for more than 30 years, but implementation (like ASCT on 
arterials) has not been widespread, typically due to the need to maintain the traditional detection 
assets that are needed to fuel the algorithms and traffic models. New data sources from connected 
vehicles and travelers can help to improve ramp metering operations immensely. Even existing 
sources from third-party link-speed providers would enable new methods of smarter ramp metering 
responses. Integrating ramp metering responses with signal timing on arterials is another opportunity 
area where new sources of data would improve practice. 

Closed-Caption Television 
Real-time streaming feeds from fixed-location cameras have played a prominent role in TSM&O 
operations for the past 30 years. Closed Caption Television (CCTV) are capable of reporting 
subsecond status of their field of view. Both fixed-aspect and pan-tilt-zoom (PTZ) cameras are used 
extensively for freeway, arterial, and transit management. Video analytics is frequently used by 
agencies for incident detection, typically in tunnels. Cameras on arterials also are capable of 
performing some vehicle counting and conditions monitoring in addition to their role in actively 
operating the traffic signal. Cameras have similar limitations to in-ground pavement loops and other 
similar technologies that they only know of the presence of a large object within a certain region of the 
pavement at a certain time. While some newer CCTV systems have capabilities to track objects in the 
field of view (and/or fusing views from multiple cameras or using fish-eye lenses) and store trajectories 
of these objects for analytics, this practice is not yet common in TSM&O. Similar to traffic signal status 
data, most TSM&O agencies do not retain CCTV images for any extended period of time, typically for 
institutional reasons, but also because no analytics methods are readily available to extract 
information from historical trends of what the camera saw at any particular time of day, day of week, or 
under certain conditions. There is certainly an opportunity to use this rich historical performance 
information in new ways to improve practice using new tools and technologies that are designed to 
handle large volumes and variety of data, even without any introduction of new data from connected 
vehicles, connected travelers, or other sources.  New data sources from connected vehicles and 
travelers may reduce agency needs to invest in further CCTV coverage. 

Vehicle Detection Stations 
Vehicle detection stations are capable of reporting the second-by-second status of every detector 
connected to the collection station for local operation and conditions monitoring. Typically, the data is 
aggregated on the station controller and communicated to the central system in 20- or 30-second 
summaries of traffic volume, speed, and occupancy. This data is then typically used to color the link of 
a conditions map red for high congestion (low speed, high occupancy) and green for low congestion 
(high speed, low occupancy). Volumes are used for reporting and trend analysis. Some sophisticated 
algorithms are used for incident detection by correlating the data from multiple detection stations. 
These methods are common, but typically are less reliable than incident reports from 911 call centers 
(via the public). Similar to traffic signals, the typical information from detectors is the presence of a 
large metallic object within a certain region of the pavement at a certain time. 
 
The main limitation of vehicle detection technology is that the information contains no indications of 
individual vehicles’ intent (where they came from or are going to), and vehicles that currently are not in 
a detector region are virtually invisible to the system. This becomes especially challenging in highly 
congested conditions when the speed drops to virtually zero, and there is almost always a vehicle in 
the detection zone. These stations and their associated central systems have difficulty in reliably 
determining the “back of queue.” New sources of third-party link-speed data (derived from trajectories 
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of probe vehicles) have improved this practice immensely. Most TSM&O agencies now find that 
Google maps with traffic is now much more accurate than their traffic conditions maps driven by 
vehicle detection stations. New data sources from connected vehicles and travelers will help to 
improve freeway and arterial conditions monitoring; and it is expected that over the next 10 years, 
many more TSM&O agencies will continue to abandon maintenance of vehicle detection stations 
(VDS), and take advantage of other more reliable sources from third-party providers. 
 
Like traffic signal data, central systems typically collect and store VDS status information in an 
RDBMS. Users of the central system can view real-time operations on maps and tabular displays, and 
many systems have detailed aggregation algorithms and tools for analyzing performance in various 
ways. New emphasis on active performance management of freeway operations has emerged over 
the past 10 years, resulting in systems like the California Department of Transportation’s (Caltrans) 
Freeway Performance Measurement System (PeMS) and Maryland’s Regional Integrated 
Transportation Information System (RITIS). These systems come closest to managing “Big Data” with 
the Caltrans PeMS system, hosting over 10 years of freeway conditions data, incident data, and other 
information in a multi-Terabyte-distributed Oracle RDBMS. PeMS and RITIS represent the closest 
match of existing systems that perform data acquisition, marshalling, and analysis functions for 
TSM&O organizations. Other agency systems that perform similar functions include the Florida 
TSM&O tool and Nevada’s Freeway and Arterial System of Transportation (FAST) performance 
dashboards. These systems will be discussed further in the next report of this project. 

Other Sensors 
Other sensors used by TSM&O agencies include environmental sensor stations, which are detection 
stations with a variety of weather sensors for road surface temperature, precipitation, high wind, 
visibility, water lever, etc. Other sensor types include truck escape ramp sensors and a variety of other 
specialty devices. Most of these sensors are capable of reporting second-by-second status, but 
typically the reporting from these sensors is on a much less frequent basis, such as 30 seconds or 
one minute. Status changes from these devices on more frequent increments typically are not useful. 
This data is then used to color the icon of the device on a conditions map to a certain status (cold or 
warm, raining or not, etc.). Historical data are stored and used for reporting and trend analysis. 
 
The main limitation of current data collection from specialty sensors is that the information is only 
related to the specific location where the sensor is deployed. Weather sensors, for example, can show 
rain in that specific spot when the surrounding area is dry (if you have ever traveled in the mountains 
of Colorado, for example, microbursts are quite common). Agencies have stretched their limited 
resources to deploy such devices in key locations, such as in mountain passes or at freeway-to-
freeway junctions. New sources of open data from the National Weather Service, for example, has 
helped to fill in many of these gaps in existing data collection. New data sources from connected 
vehicles and travelers will vastly help to improve freeway and arterial conditions monitoring with 
respect to road-weather conditions across the agency’s network and reduce costs of agencies to 
deploy monitoring sensors. 
 
Like the other sensor sources, central systems typically collect and store specialty sensor status 
information in a RDBMS. Users of the central system can view real-time operations on maps and 
tabular displays, and many systems have detailed aggregation algorithms and tools for analyzing 
conditions in various ways. However, much or most of the data collected by these sensors is simply 
deleted by the RDBMS after a specified number of days in order to maintain responsive database 
performance. There is certainly an opportunity to use this rich historical performance information in 
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new ways to improve practice using new tools and technologies that are designed to handle large 
volumes and variety of data, even without any introduction of new data from connected vehicles, 
connected travelers, or other sources. 

Incident Data 
Most State DOTs and regional management agencies use incident data feeds from law enforcement 
agencies for incident response and traveler information. Most larger agencies are now obtaining link-
speed and incident indication information from third-party data providers (HERE, Inrix, TomTom, and 
others). A small and growing subset of agencies are obtaining somewhat more granular vehicle status 
data from crowdsourcing apps (i.e., Waze). While most of the information in an incident report is 
standardized, many incident reports from law enforcement agencies have textual descriptions of 
location and onsite activity status (officers onsite, officers en-route, number of injuries or vehicles 
involved, etc.), which must be manually deciphered by operators in a Traffic Management Center 
(TMC) to accurately locate the incident on a map and encode in incident management logs. 
Crowdsourcing data typically is automatically geolocated in the reported status. 
 
Like the other sources, central systems typically collect and store incident status information in an 
RDBMS. Users of the central system can view real-time status on maps and tabular displays; and 
many systems have detailed algorithms and tools for response planning, such as automatically 
placing messages on multiple dynamic message system (DMS) signs at the same time, pointing 
CCTV cameras at the location, and posting information to 511. Incident data typically is not deleted by 
the RDBMS with the same veracity as other data sources after a specified number of days in order to 
maintain responsive database performance, since the tables do not grow at the same rate as the 
tables that store sensor information. However, there is still certainly an opportunity to use this rich 
historical performance information in new ways to improve practice using new tools and technologies 
that are designed to handle large volumes and variety of data. Systems, such as PeMS and RITIS, 
have tools for this purpose that have been proven useful for historical analysis. 

Opportunities to Improve Practice 
As discussed in the previous section, current sources of data for TSM&O are heavily focused on 
connected infrastructure and proven technologies. Database and data management practices tend to 
be conservative, simply because Information Technology (IT) and hardware investments must last for 
10 years or more, given agency procurement cycles and limitations of funding. TSM&O agencies do 
not have complete situational awareness from spot-sensors that are geographically dispersed with 
limited capabilities. As the worldwide trend of mobile technology has advanced, data from emerging 
mobile sources can improve a wide range of TSM&O practices in the following ways: 

• Incident and event management—improved incident response, onsite monitoring, and 
management. 

• Road hazard warnings—higher fidelity location information, more accurate confirmation of 
hazard types, more timely warnings. 

• Speed warnings—specific recommendations to different vehicle types based on roadway 
conditions, more timely warnings. 
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• Traffic signal timing—better operation in oversaturated conditions, more timely updates to 
fixed timings, broad-based adaptive controls, reduced reliance on physical sensor devices 
and maintenance, shift towards in-vehicle data delivery, performance monitoring of signals 
with no physical links to DOT communications infrastructure. 

• Freeway ramp metering—more accurate and coordinated corridor metering algorithms. 

• Variable speed limits/recommendations and lane-use control strategies—more accurate and 
coordinated responses, shift towards in-vehicle signage reducing needs for infrastructure 
investments. 

• DMS displays—more accurate messaging, shift towards in-vehicle signage for more 
personalized recommendations, reduced need for infrastructure investments. 

• Work zone implementation—higher safety for workers and drivers, higher resolution maps of 
work zone geometries, real-time information on new zone locations, less need to manually 
update locations. 

• Broadcasted and Personalized Traveler information—higher fidelity information, more 
accurate and timely information, personalized recommendations. 

• Congestion pricing, road user fees, and tolls—more granular toll rates, more accurate 
congestion prices, personalized tolls, and road user fees. 

• Performance measurement, including weather and emissions monitoring—higher fidelity 
analysis, more comprehensive coverage of geography, reduced need for infrastructure 
investments. 

• Asset management and maintenance—reduced need for infrastructure investments, faster 
detection and response to equipment failures. 
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Chapter 3 Categories of Emerging 
Data Sources 

The purpose of this chapter is to identify emerging data 
sources for Transportation Systems Management and 
Operations (TSM&O). An emerging data source is 
characterized by information that is potentially relevant for 
TSM&O, and that has not yet been widely capitalized on. 
New technologies are anticipated to accelerate the 
availability of this data over the next two decades. This 
chapter introduces categories of emerging data sources, 
and assesses the likely point(s) of access to the TSM&O agency. After reading this chapter, the reader 
will understand the types of emerging data that will be available over the next 10 years. The next 
chapter provides estimates of the volumes, velocity, and storage needs for these emerging data. 

Chapter Objectives:
• Identify data sources that will be

available for TSM&O over the 
next 10 years. 

• Identify how TSM&O agencies
will access these data. 

We have categorized Emerging Data Sources into four general classifications: 

1. Connected Travelers.

2. Connected Vehicles (with three subcategories).

3. Connected Infrastructure.

4. Other Potential Sources (with three subcategories).

Each of these categories will be discussed separately in the following narrative. 

While the information from these sources may be relevant to a wide variety of agency activities, the 
focus of this report is on the applicability of the information for TSM&O strategies. Each source also is 
characterized by the way in which the data will likely be consumed by TSM&O organizations (i.e., the 
point of access). The point of access is important in identifying how acquisition, marshaling, and 
analysis tools and technologies can be applied appropriately. 

The report will emphasize real-time data (for use in operations), but historical data may be equally 
important as data storage and processing capacities improve with new tools that will be presented 
later in this report. Historical data, while typically the purview of planning departments, can provide 
performance measure insights to TSM&O agencies, particularly as the ability to predict traffic based 
on current and historical data will likely become more reliable over time. 

Connected Travelers 
The rapid adoption of the smartphone has enabled hundreds of new ways that travelers exchange 
information with agencies and commercial entities related to travel and transportation. As of 2015, 
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more than 68 percent of adult Americans own a smartphone, and this number will only increase. Of 
those ages 18 to 29, 86 percent have a smartphone, as do 83 percent of those ages 30 to 49. (Pew 
Research Center, “U.S. Technology Device Ownership 2015,” Accessed May 13, 2016, 
http://www.pewInternet.org/2015/10/29/technology-device-ownership-2015.) As of 2011, there were 
more cell phones and tablets in the U.S. than the entire American population—328 million connected 
devices compared to 312 million people. (CNN Money, “U.S. cell phones, tablets outnumber 
Americans—Oct. 12, 2011,” Accessed May 13, 2016, 
http://money.cnn.com/2011/10/12/technology/cellphones_outnumber_americans/index.htm.) 
 
Virtually ubiquitous 3G/4G cellular networks and prevalent open Wi-Fi networks allow travelers to 
achieve almost uninterrupted connectivity. Several studies have indicated that millennials (people who 
are between 18 to 34 years old as of 2016), in particular, would rather be without a car than a 
smartphone. (Zipcar, “Millennials & Technology:  A Survey,” Accessed May 13, 2016, 
http://www.slideshare.net/Zipcar_Inc/millennial-slide-share-final-16812323.) Young adult adoption rates 
of driver licenses is now lower than any point since 1980. (Frontier Group and U.S. Public Interest 
Research Group (PIRG) Education Fund, “Transportation and the New Generation:  Why Young 
People Are Driving Less and What It Means for Transportation Policy,” Accessed May 13, 2016, 
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Generation%2
0vUS_0.pdf.) While video conferencing and telecommuting may reduce work-related travel demand, 
and social media have connected groups of like-minded individuals without the need for physical meet 
ups, the majority of the workforce still needs to commute. Furthermore, people enjoy meeting face-to-
face for recreation, entertainment, and meals. When people leave home, they almost always travel with 
their phone or Web-enabled tablet device. While there will always be a small segment of the population 
that is not connected to the network (e.g., does not own a smart device, or device currently is 
inoperable), the majority of travelers already are connected to a suite of apps and services (i.e., Wi-Fi, 
global positioning system (GPS), data, etc.) through a personal device that knows their physical 
location on a relatively granular level (accurate within several meters and updated every several 
seconds). 
 

 

While traveler information once consisted solely of push notifications to the traveler, apps are now 
collecting information about the user’s activities and location to provide content to the app itself (e.g., 
Google Maps, Waze, etc.), but also to personalize information for the user based on their current 
location. Crowdsourcing is a popular term for organically collecting data on field conditions from 
mobile devices. Examples of location-aware mobile applications that provide value to users include 
Moovel (formerly RideScout), Uber, or MaaS, which are “mobility as a service” companies that are 
mode agnostic and seek to provide the best available option to get from Point A to Point B, including 
options such as transit, bicycle, or taxi. These companies collect user information in order to provide 
individualized recommendations via user profiling. This “digital exhaust” or breadcrumbs of traveler 
location, activities, and status (e.g., riding in a car, riding on transit, walking, biking, etc.) hold 
significant promise for TSM&O activities. With the important caveat that privacy remains critical, these 
services present a new source of information on traveler behavior that was once only available via 
expensive and time-consuming travel surveys. In the past, rarely, if ever, have TSM&O strategies 
incorporated traveler demographics and behaviors, but now, this may be changing with the potential 
availability of this kind of data.  

Some TSM&O use cases for connected traveler data include: 

• Populating agency traffic condition maps. 

• Populating regional or project-specific origin-destination matrices. 

http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015
http://money.cnn.com/2011/10/12/technology/cellphones_outnumber_americans/index.htm
http://www.slideshare.net/Zipcar_Inc/millennial-slide-share-final-16812323
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Generation%20vUS_0.pdf
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Generation%20vUS_0.pdf
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• Identifying transit ridership and usage patterns. 

• Identifying bicyclist and pedestrian usage patterns. 

• Determining the traffic impacts of proposed development and construction projects. 

• Identifying locations of incidents and traffic-impacting events. 

• Updating traffic signal timing. 
 
TSM&O use cases of Emerging Data Sources will be explored in further detail in a subsequent report. 
Additional information is available in the References section [1-7]. 

Points of Access for Connected Traveler Data 
TSM&O organizations currently can obtain connected traveler data from at least three different 
methods: 

1. Directly through an agency-branded app. 

2. Indirectly through a third-party source. 

3. Indirectly though social media outlets (e.g., posts, tweets, feeds, etc.). 
 
Almost every region with a 511 system has a branded 511 app (or suite of apps for relaying traffic 
conditions and transit schedules). Many agencies also have citizen reporting apps, which allow the 
public to report infrastructure issues such as potholes. Examples of agency-branded apps include the 
Utah Department of Transportation (DOT) Citizen Data program and the Los Angeles Metropolitan 
Transportation Authority (MTA) 511 app. (Google Play Store, “Utah Department of Transportation 
(UDOT) Citizen Reports—Android Apps on Google Play,” Accessed May 13, 2016, 
https://play.google.com/store/apps/details?id=gov.utah.udot.citizenreport.; Los Angeles County 
Metropolitan Transportation Authority (Metro), “Metro Mobile App,” Accessed May 16, 2016, 
https://www.metro.net/mobile/metro-mobile-app.) Current 511 apps typically are only data-push 
applications that do not record or store user-related information. Adoption rates generally are not 
significant compared to other commercial products (in major regions typically less than two to 
three percent of travelers). These apps could be leveraged, with appropriate privacy protocols, for 
collecting traveler data useful for TSM&O activities. It could be argued that adoption rates of such 511 
apps in the future could be increased if new, location-based features and functionality were provided; 
in particular, features and functions that only TSM&O agencies can provide. The value proposition 
would be to provide such functions in exchange for traveler behavior data, which could enhance 
TSM&O activities. 
 
Higher adoption rates would lead to a need for tools and technologies to store and process the 
information. If an agency-branded app becomes extremely popular, the data load on the agency’s 
cloud or physical servers may require commercial capacity levels. If the app is not widely adopted, it 
may not warrant sophisticated tools and approaches for data management. 
 
Indirect data collection by DOTs through a third-party source will almost always be via the Internet and 
stored in the Cloud or physical servers. Note that today many DOTs do not utilize cloud-based storage 
and applications, but in line with the general trends of Information Technology (IT) infrastructure, it will 
likely happen in the near future. Indirect data collection through a third-party source could include the 
provision of aggregated datasets or raw data on individual travelers that is appropriately anonymized. 

https://play.google.com/store/apps/details?id=gov.utah.udot.citizenreport
https://www.metro.net/mobile/metro-mobile-app


Chapter 3 Categories of Emerging Data Sources 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  14 

A real-time example of connected traveler data collection is the partnerships that many agencies now 
have with Waze. Waze provides almost raw connected traveler information to agencies for free in 
exchange for agency data on traffic incidents and work zones, as well as closed-circuit television 
(CCTV), dynamic message sign (DMS), and other field device feeds for sharing on the Waze app. The 
primary delivery mechanism is a real-time Application Programming Interface (API) that provides 
individual traveler speeds on a segmented network of roadways relevant to the agency (e.g., within 
State boundaries). In one of the first Waze partnerships with Rio de Janeiro in Brazil, the app has 
generated only around 110,000 users among the City’s 6.45 million total population. (World Population 
Review, “Rio De Janeiro Population 2016––World Population Review,” Accessed May 13, 2016, 
http://worldpopulationreview.com/world-cities/rio-de-janeiro-population.) Note that penetration rates of 
Waze in other countries, such as Israel (where it was invented), are greater than 90 percent. In 
addition, considering the fact that Android users cannot uninstall Google Maps, the market penetration 
rate of Waze is roughly equivalent to the number of Android users that use location-based services 
(Waze is a separate traveler information app, but is owned by Google and uses the traffic conditions 
information from Google Maps.). Similar restrictions are true for Apple iOS devices and Apple map 
products. Individual user trips or trip history, even anonymized, currently are not shared by Waze, 
Google, or others (Waze shares link speeds as reported by individual users, but not their entire trip.). 
Although many app developers will note that they do keep databases of user trip histories, and the 
default is almost always set for the user to “opt in.” 
 
In a less real-time manner, many agencies also purchase travel data from third parties, such as 
AirSage and Cellint, which track users’ cell phone movements throughout the cellular network. The 
movement of phones while engaged in a moving vehicle can provide a rough notion of origin-
destination flows. Typically, this data is purchased on a one-time basis for a specific project or 
analysis, via a File Transfer Protocol (FTP) download, .ZIP file transfer, or database transfer. However, 
this type of traveler information does not provide a completely accurate representation of travel flows, 
since not all drivers are engaged in phone conversations, and not all phone conversations continue 
from origin to destination. The data also can grow to sizes that may require application of Big Data 
tools or technologies for robust analysis. 
 
Parsing of open social media feeds is a popular trend in marketing and image management. In fact, 
there is an entire industry devoted to social media monitoring to help businesses identify the 
effectiveness of marketing campaigns and new product introductions, and to evaluate consumer 
sentiment regarding a personality, technology, or social topic. Applicability for TSM&O activities 
remains challenging as precise location-based data is not always included in user messages, and 
messages often include inconsistent, abbreviated spelling. Application is better suited for major 
emergency situations that evolve over an extended period of time than for everyday traffic incidents or 
congestion. The point of access for parsing open social media feeds is similar to the collection of 
individual traveler trips from third parties; it will most likely be collected from a third-party cloud, and 
stored in the TSM&O agency cloud or physical server. 

Connected Vehicles 
Connected vehicles are divided into three categories of emerging data sources: 

1. “Proprietary” (commercial) connected vehicle systems. 

http://worldpopulationreview.com/world-cities/rio-de-janeiro-population
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2. “Open” connected vehicle systems (i.e., U.S. DOT-sponsored technologies; Dedicated Short-
Range Communications (DSRC)). 

3. Radio Frequency Identification (RFID), Wi-Fi, and other technologies. 
 
Each type has a different point or points of access, relevant to the implications for application of 
advanced tools and technologies for use in TSM&O. 

Commercial Connected Vehicle Systems 
Commercial connected vehicles include cellular connections to a private cloud from the vehicle’s 
infotainment system or third-party in-car systems for vehicle tracking and data collection. Currently, 
commercial in-vehicle systems primarily are used for the purpose of gaining Internet access for 
passengers’ nomadic devices and infotainment systems. 
 
Nearly every automaker now offers connected car options. In this rapidly evolving area, automakers, 
telecommunications providers, technology companies, and content producers are establishing 
strategic alliances to provide the full range of services necessary for new and emerging products. 
According to a 2015 report by PricewaterhouseCoopers (PricewaterhouseCoopers, “Connected Car 
Study 2015:  Racing ahead with autonomous cars and digital innovation, 2015,” Accessed at 
http://www.strategyand.pwc.com/reports/connected-car-2015-study.), the primary use cases for 
automakers and their partners are: 

• Entertainment. 

• Mobility management (e.g., navigation, traffic, incidents). 

• Driver assistance/safety. 

• Vehicle health monitoring/recalls/remote diagnostics. 

• Driver health monitoring. 

• Fleet management. 

• Insurance premium evaluation. 

• Autonomous driving. 
 
These are potentially rich sources of data on driver and vehicular behavior, which can significantly 
benefit consumers and auto suppliers. However, there has been little discussion to date on sharing 
this type of data with DOTs, although momentum is building for using commercial aftermarket devices 
for setting insurance premiums and road mileage rates as an alternative to gasoline taxes. (Oregon 
DOT, “MyOReGO | A new way to fund roads for all Oregonians,” Accessed May 13, 2016, 
http://www.myorego.org.) 
 

http://www.strategyand.pwc.com/reports/connected-car-2015-study
http://www.myorego.org/
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Third-party vehicle tracking and data collection 
companies, such as INRIX, HERE, TomTom, Garmin, 
etc., have monetized vehicle status information 
(primarily location and speed) for sale to DOTs on a 
subscription basis, providing coverage in a DOT’s 
area of influence (a State or region). These 
companies have sharing agreements with vehicle 
fleets (and in-dash navigation systems of some 
Original Equipment Manufacturers, or OEMs), as well 
as data sharing agreements with private owners of 
aftermarket navigation devices. In the U.S. alone, 
these companies collect data in excess of a terabyte 
per month. (Texas A&M Transportation Institute, 
“Strategic Research Program:  Big Data Scan,” 
Accessed May 13, 2016, http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/161505-1.pdf.) As 
of June 2016, HERE has published a connected vehicle data sharing standard, which may greatly 
accelerate the availability of trajectory-based commercial connected vehicle data to DOTs. (HERE, 
“HERE, automotive companies move forward on car-to-cloud data standard,” Accessed July 1, 2016, 
https://lts.cms.here.com/static-cloud-
content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_st
andard.pdf.) 
 
Many DOTs are now routinely purchasing this data to supplement their existing vehicle speed 
monitoring systems (i.e., in-pavement loop detectors, radar, and video) and meet section 1201 
Federal requirements for the dissemination of real-time mobility information. These suppliers also 
have the ability to provide archived data to DOTs for analysis and planning applications. Note that 
there are sometimes restrictions on the use of this purchased data, and agencies must be aware of 
these restrictions before entering purchasing agreements. 
 
There also is sizeable interest from the Cellular industry to provide DSRC-like services by upgrading 
existing infrastructure. Recent research and development indicates that low-latency vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I) communications can be provided by use of Long Term 
Evolution (LTE) cellular phone towers by locating the switching hardware (and/or software) at the 
tower, instead of going to the Cloud and then back down to the other vehicle. This solution can 
compete with the low-latency abilities of DSRC if the frequency of vehicle status updates is reduced to 
20Hz (5 updates per second versus 10 updates per second for DSRC). (AT&T Labs Research, 
“Enabling Vehicular Safety Applications over Long-Term Evolution (LTE) Networks,” Accessed 
May 13, 2016, http://web2-clone.research.att.com/export/sites/att_labs/techdocs/TD_101260.pdf.) 
Similarly, the major communication system providers already are working towards 5G wireless 
systems, which are geared toward supporting the Internet of Things (IoT)—the network of physical 
objects (devices, vehicles, machines, etc.) embedded with electronics, software, sensors, and network 
connectivity that enables these objects to collect and exchange data—with expected widespread 
adoption in the 2019 to 2022 timeframe. (IEEE Spectrum, “Autonomous Driving Experts Weigh 5G 
Cellular Network Against Dedicated Short Range Communications,” Accessed May 13, 2016, 
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-
5g-cellular-network-against-shortrange-communications-to-connect-cars.) The implications of IoT will 
be discussed in more detail throughout this document. 
 

As of June 2016, HERE has published a 
connected vehicle data sharing standard, 
which may greatly accelerate the 
availability of trajectory-based 
commercial connected vehicle data to 
DOTs. (HERE, “HERE, automotive 
companies move forward on car-to-cloud 
data standard,” Accessed July 1, 2016, 
https://lts.cms.here.com/static-cloud-
content/Newsroom/290616_HERE_auto
motive_companies_move_forward_on_c
ar_to_cloud_data_standard.pdf.) 

http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/161505-1.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
http://web2-clone.research.att.com/export/sites/att_labs/techdocs/TD_101260.pdf
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
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5G technology is expected to double or triple 4G bandwidth, but continue to have the same limitations 
as existing cellular architectures—download bandwidth to the remote device is significantly higher 
compared to the upload bandwidth. 

Point of Access:  Private Cloud to DOT Cloud or Physical Point 

In the case of third-party providers of segment-based speed data, this information is made available to 
DOTs from a private cloud to a DOT cloud (a cloud system owned, operated or leased by DOTs) or 
physical server(s) through a defined API. If vehicular condition data was made available directly from 
OEM systems, it would most likely use a similar data exchange method. Direct availability of vehicular 
condition data from the OEM or the devices installed for insurance premium settings remains elusive. 
Since there are existing business models for third-party providers of this type of information, it is 
perhaps more likely that these existing supply-chain portals would be expanded to include more and 
more commercial connected vehicles rather than the introduction of competing products provided 
directly by OEMs. The road user fee pilot, conducted by Oregon DOT, is perhaps the leading 
prototype model for how commercial Connected Vehicle (CV) technologies could be used for TSM&O, 
since the usage and travel data of individual road users already is being provided to the DOT via “opt 
in” data feeds. The road user currently has the option to either “opt-in” and share location data with 
Oregon DOT, or “opt-out” and only provide mileage information in order to compute the usage fee. 

U.S. Department of Transportation/Public Connected Vehicles 
(Dedicated Short-Range Communications) 
In contrast to the proprietary systems being developed by private companies seeking to compete for 
sales and revenue, open connected vehicle platforms are being developed by U.S. DOT for mobility 
and safety applications. This program has a long history; and background details are available from 
National Highway Traffic Safety Administration (NHTSA), U.S. DOT, Government Accountability Office 
(GAO), American Association of State Highway and Transportation Officials (AASHTO), and other 
related sources. Open connected vehicle systems rely on DSRC technology to send vehicle status 
data to other vehicles and infrastructure access points with very low latency (~20 times per second 
(50 ms) from transmission to receipt). The low latency requirement is necessary for crash prevention 
safety applications. NHTSA has announced a notice of proposed rulemaking, which mandates the use 
of DSRC radios in all new passenger vehicles sold in the United States. If this rule is officially enacted, 
a similar rule for commercial vehicles (including buses) will likely follow. The DSRC band (5.9GHz) 
currently is protected by the Federal Communications Commission (FCC) for licensed use of vehicle 
safety and mobility applications. 
 
In the U.S. DOT connected vehicle platform, each vehicle broadcasts its “heartbeat” Basic Safety 
Message (BSM) information containing its speed, location, heading, etc. every 100ms (10ms). Any 
other vehicle or roadside infrastructure device that is equipped with the DSRC equipment and is 
within line-of-sight to the transmitting vehicle can receive the heartbeat information. Raw BSMs by 
themselves are snippets of a vehicle’s status at the specific time and location where the message 
was broadcasted (i.e., a single point of digital exhaust). In addition to BSMs, a Probe Data Message 
(PDM) encapsulates a string of “snapshots” (a more comprehensive data element than the BSM) 
over a longer timeframe to provide a vehicle trajectory information that could be shared with a 
roadside unit (RSU). 
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The snapshots are added to the PDM at fixed time intervals, at certain events, when a vehicle starts or 
stops, or based on vehicle speed which means that slow-moving vehicles would have PDMs that 
cover shorter distances, and faster moving vehicles (say, on a freeway) would have PDMs that cover 
longer distances. The PDM currently is defined as having a fixed-size buffer, storing a maximum of 
32 snapshots (although varying numbers for the snapshot storage limits currently are being discussed 
in the standards development process) before starting a new PDM. If the DSRC-equipped vehicle 
passes an RSU requesting PDMs, it transmits its current PDM which can cover up to 120 seconds or 
1km whichever comes last. If no RSU is in range, the PDM snapshots are deleted from the 32 in the 
buffer in a defined manner preferentially to maintain as long as a trajectory as possible with interim 
points deleted. 
 
Other messages that can be broadcast by the vehicle include the Signal Request Message (SRM). 
This message allows a transit, freight, emergency, or other authorized vehicle (which could in theory 
include any DSRC-equipped vehicle) to request priority at a traffic signal. This application has been 
successfully demonstrated in the Multimodal Intelligent Traffic Signal System (MMITSS) tests in 
Arizona and California. Transit priority requests are stored in DOT databases for the entire test 
duration. As a result, this project has successfully demonstrated the derivation of signal performance 
metrics from BSMs through simulation. (University of Arizona, Multimodal Intelligent Traffic Signal 
Systems (MMITSS) Concept of Operations, December 2012. Accessed at:  
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf.) 
Additional messages currently are being proposed, including a SpeedProfile message, and an 
enhancement to the BSM that includes modal information. 
 
The Michigan DOT Data Use Analysis and Processing (DUAP) system is designed for a collection of 
PDMs from DSRC-equipped vehicles, as well as data feeds from commercial CVs, agency fleet GPS 
devices, and other sources. (Michigan DOT, “VII Data Use Analysis and Processing:  System 
Requirements Specification,” December 2007, Accessed May 13, 2016, 
http://www.michigan.gov/documents/mdot/MDOT_DUAP_SysReq_Final_220099_7.pdf.)  
Applications of the stored trajectory data currently are in development. 
 
Demonstrations by U.S. DOT’s Connected Vehicle Safety Pilot program indicated the ability of BSMs 
to plot high-resolution trajectories of equipped vehicles on Geographic Information Systems (GIS) 
maps. Other existing test beds in California, Florida, New York, and Virginia have tested the data 
exchange of PDMs and BSMs. The upcoming Connected Vehicle Pilot Deployment sites in New York, 
Wyoming, and Florida will demonstrate additional safety and mobility applications. 

Point of Access:  Roadside Unit to Agency Physical Server 

In the case of U.S. DOT Public Connected Vehicles, the point of access of the PDM/BSM data is 
directly from the vehicle itself to the roadside unit. This requires the DSRC equipment to be within line-
of-sight and within range (generally 500m without obstructions). 

Radio Frequency Identification, Wi-Fi, and Bluetooth Data 
Radio Frequency Identification (RFID) technology is commonly used to transmit information over very 
short distances (~10m). These applications typically are employed by private or public-private 
operators for purposes, such as tolling, parking, weigh-in-motion checks for commercial trucks, fuel 
dispensing, and fleet management (check-in and check-out). As such, a vehicle’s location and 
required PII is read at the point of contact between the device reader and the mobile unit (tag, sticker, 

http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
http://www.michigan.gov/documents/mdot/MDOT_DUAP_SysReq_Final_220099_7.pdf
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or device that holds static information). Sharing of the information with DOTs for TSM&O purposes 
becomes challenging, due to the embedded PII, which is necessary for payment and account 
transactions, as well as the lack of open standards (although there are some common standards 
employed by multiple public-private operators such as E-Zpass). 
 
Wi-Fi and Bluetooth technologies can extend the transmission range to approximately 30m and are 
commonly used for vehicle (or device) reidentification. The Media Access Control (MAC) address of 
the Bluetooth device or Wi-Fi radio is detected at one location, and then reidentified at a second 
location. Travel time between the two beacons can then be computed. No PII is exchanged between 
the units, because most solutions hash the MAC address to further prevent tracking of a specific 
device through a network of beacons. 

Point of Access:  Variable 

Private and public-private RFID readers are not commonly shared with DOTs due to the embedded 
PII. If they were to be shared in the future, it would likely be a Cloud API connection from the private or 
public-private operator to a DOT Cloud (a cloud system owned, operated, or leased by DOTs) or 
physical server. Bluetooth and Wi-Fi travel time data collection systems are typically aggregated by an 
onsite or Cloud processor, and then shared with DOT Cloud or physical servers via API. Some 
vendors provide access to individual travel times (determined by matching a specific MAC addresses 
at two separate readers), while others only provide summaries of travel times by time of day (TOD), or 
day of week (DOW), etc. for each pair of readers. Travel times captured using Bluetooth technologies 
are typically more often used by local agency DOTs compared to subscription probe-based services, 
such as INRIX and HERE. For example, the City of Austin, Texas, maintains approximately 
50 Bluetooth readers for travel time data collection on regional arterials. The agency chose to 
purchase these devices as capital equipment versus leasing the equipment using a SaaS subscription 
model that is promoted by several vendors. Data transferred from the Bluetooth provider cloud system 
is stored in the agency’s Advanced Traffic Management System (ATMS), but is typically transferred to 
long-term storage after 60 to 90 days as per most agencies’ ATMS policies. After this period, the 
agency rarely accesses this data. 

Connected Infrastructure 
While the Internet of Things is a relatively new term in the 
world of big data, TSM&O organizations have been 
connecting to infrastructure to obtain information for more 
than 40 years. One of the core missions of TSM&O 
divisions is to collect device status and sensor data, and 
provide command and control actions to field devices from 
the Traffic Management Center (TMC). Connected 
infrastructure devices include traffic signals, ramp meters, 
CCTV, DMS, vehicle detection, Road Weather Information System (RWIS), flood warning, high wind 
warning, and a variety of other devices. Emerging application devices include Active Traffic 
Management applications of Variable Speed Limits (VSL) and Lane Control System (LCS). Integrated 
Corridor Management (ICM), interconnections of arterial control and freeway control systems, as well 
as transit and other demand management systems, are becoming more popular. Center-to-Center 
connections between regional systems are common for regions with multiple agency partners to share 
information and improve operations. 

While the Internet of Things is a 
relatively new term in the world of 
Big Data, TSM&O organizations 
have been connecting to 
infrastructure to obtain information 
for more than 40 years. 
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There are emerging data sources in connected infrastructure, however. Several high-profile bridge 
failures have instigated the need to monitor bridge health in quasi-real time. Deploying and connecting 
emissions sensors is in the research and development stage. While there is uncertainty in how data 
from connected vehicles and travelers will be obtained and processed, the DOTs have solid 
experience in connecting information infrastructure, though data storage and management using Big 
Data technologies and techniques are still in need of evaluation. Most agencies today simply purge 
detailed data after a certain archival period (e.g., 30 or 60 days) using standard features of Relational 
Database Management System (RDBMS), such as Oracle and MS SQL Server. Large-scale storage 
of CCTV video and analysis of that video by emerging techniques, such as machine-learning or 
pattern matching, is a key consideration for future TSM&O practices. Safety and efficiency trends 
relative to TSM&O actions could potentially be found by automated analysis of CCTV images that 
would be cumbersome to attempt manually. 

Other Sources 

Mobile Sensors 
The popular media and many white papers on Big Data are fond of identifying the “Google car” as a 
significant generator of data as its spinning Light Detection and Ranging (LiDAR) scanner collects 2 to 
20GB/s of information from the area surrounding the vehicle. According to https://ark-
invest.com/research/googles-driverless-car-massive-data-request, Google’s intent to LiDAR map 
every road in the U.S. will require up to 70 Petabytes of storage. In addition to LiDAR, 3D cameras for 
StreetView images can generate up to 60 MB/s. Detailed radar, sonar, and GPS could add an 
additional 160 KB/s. There are many use cases for LiDAR point clouds, particularly in construction 
management and asset management. However, it is challenging to imagine the value of real-time or 
quasi-real-time sharing of LiDAR point cloud data with a DOT for TSM&O purposes as the vehicle 
moves through a space. Perhaps, virtual reality headsets might be used by future TMC operators to 
navigate near-real-time 3D spaces shared by suitably equipped automated vehicles. Certainly 3D 
camera views (even 2D camera views) could be beneficial, particularly in incident, event, and security 
management situations when there is no existing view from a fixed camera location with or without 
pan-tilt-zoom (PTZ). Many TSM&O organizations already rely on StreetView for assessment of field 
locations without having to physically travel to the location. Real-time video from onsite vehicles is 
certainly of value. 

Points of Access:  Mobile Sensor Data 

There are no known uses of mobile 3D point clouds and/or mobile 3D video by TSM&O organizations. 
If such data was available in 5 to 10 years, the source would likely be via the Internet from the mobile 
sensor vehicle directly to a DOT cloud (a cloud system owned, operated, or leased by DOTs) or 
physical server. Such information would likely be only available when requested or pushed and not 
transmitted at all times. Perhaps, initially it would only be available from agency-owned incident 
management vehicles. Since 3D static maps currently are available on StreetView and other free 
sources, there would not likely be a revenue market for comprehensive 3D visual maps on a paid 
basis as a complete data set. There is some emerging market for 3D LiDAR maps, particularly for 
construction and asset management. It is challenging to envision use cases for maps for an entire 
agency’s region for TSM&O purposes, even within the next 5 to 10 years. 

https://ark-invest.com/research/googles-driverless-car-massive-data-request
https://ark-invest.com/research/googles-driverless-car-massive-data-request
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High-Resolution Maps 
A number of vendors are now offering high-resolution digital map products (HERE, MapBox). These 
digital maps are focused on lane-level accuracy geometry, accurate placement of all traffic control 
signs and advisories, allowable traffic controls at intersection junctions, and major street furniture. 
Currently, the maps are being marketed to support automated driving. DOTs, however, could be a 
natural consumer of such detailed data, in particular, since some V2I applications require precise 
description of the geography at intersections. It is likely that in the next 0 to 5 years most agencies will 
generate these GIS files in-house or through contract mechanisms. Over the next 3 to 10 years, 
however, it is potentially likely that procurement of such data by DOTs for use in outward-facing V2I 
applications would be more common than in-house generation due to the labor involved to generate 
such information and the lack of staff in TSM&O organizations to perform these tasks. 

Points of Access:  High-Resolution Maps 

Current vendors offer access to high-resolution digital maps on their cloud-based servers for direct 
use from the Cloud as a subscription service. Business models may evolve to allow the native files to 
be downloaded, clipped, and converted to GIDs and so on at some time in the future. The challenge 
with local storage, like any mapping products maintained by DOTs today, is keeping the information up 
to date. Perhaps, initially, it would only be available from agency-owned incident management 
vehicles. Combining high-resolution connected traveler and connected vehicle data with high-
resolution digital maps seems a reasonable consideration for TSM&O activities in the next 5 to 
10 years, and thus the local storage or cloud-based access to these assets seems forthcoming. 

Aggregated and Nonaggregated Transactional Data 
TSM&O encapsulates some components of longer-term trends and changes to travel behavior. New 
information regarding supply chain and logistics management, purchasing behaviors, real estate 
marketing and valuation, and other economic transactions can affect TSM&O decisionmaking in 
subtle and perhaps not so subtle ways, particularly when it involves freight. An example of the value of 
these type of data is being modeled by Quetica, which serves Iowa DOT, among other clients. Iowa 
DOT utilizes Quetica to apply commodity-specific, county-level, cross modal global freight flow data to 
supply chain optimization analysis as a courtesy to companies in, or considering locating to, Iowa. In 
addition to these economic transaction-based sources, there are comparable data sources associated 
with utility transactions, such as transportation-relevant energy (electrical, natural gas); and 
telecommunications (fixed and mobile data utilization) patterns that may affect the manner in which 
agencies respond to changes in freight flows. At an aggregated level, these data may not initially be 
considered big enough to warrant new ways of storing and analyzing the information. Certainly if 
nonaggregated information was available over the next 3 to 10 years, procurement of this information 
would be challenging for TSM&O agencies to store and analyze with existing technologies. 

Points of Access:  Aggregated and Nonaggregated Transactional Data 

Current vendors offer access to aggregated transactional data through traditional download from a 
cloud server. Nonaggregated data would like be encapsulated similarly and shared with DOT through 
a cloud-to-cloud API. 
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Chapter 4 Projected Nature of 
Emerging Data Sources 

The purpose of this chapter is to characterize the nature, volume, and velocity of relevant emerging 
data sources. A quantitative approach is applied to estimate the scale of the big data challenges facing 
Transportation Systems Management and Operations (TSM&O) organizations. While some past 
reports have estimated data volumes, particularly for the United States Department of Transportation 
(U.S. DOT) Connected Vehicle (CV) program, few other sources have consolidated various emerging 
sources in one report. After reading this chapter, the reader will have an appreciation for the scale of 
the information that may be available to TSM&O practitioners in 5- and 10-year time horizons in each 
of the categories. The reader will understand that new “Big Data” technologies, and tools will be 
needed for extracting information and value from the sources. In subsequent chapters, we survey the 
marketplace of big data solutions and technologies to manage and extract value from emerging data 
sources. These three chapters provide the reader with more indepth understanding of available tools 
and technology solutions. 

Chapter Objectives: 
• Estimate the volume and

velocity of data from each
emerging data source category
in 5- and 10-year time horizons.

• Estimate the total data storage
needed to store and retain all
collected information in 5- and
10-year time horizons.

Emerging Data Sources will come from Connected 
Travelers, Commercial Connected Vehicles, U.S. DOT 
(Public) Connected Vehicles, Connected Infrastructure, 
and Other sources. In this chapter, we assess the 
projected nature of these data sources for three 
timeframes: 

1. 2016 (current year).

2. 2021 (5-year time horizon).

3. 2026 (10-year time horizon).

The projections of each of the categories include estimates of the data availability, delivery method(s), 
volume, velocity, and total storage requirements. This chapter is organized as follows: 

• Assumptions that apply across most of the emerging sources.

• Estimates of the current population, which will generate content for each data source and any
additional data elements that are available from each source.

• Estimates of projected growth rates of each source.

• Comparisons of the data volume and velocity of the various sources across the U.S. for a
typical agency on a typical day.

• Anticipated cumulative data growth assuming all received information is archived and
processed using big data tools and technologies for TSM&O applications.
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Assumptions 
For comparison purposes across the various emerging data sources, we focus on the common 
elements across all modes (including transit, walking, biking, and of course riding in their personal, 
shared-use, or for-hire vehicle):  trajectory data of travelers’ position and speed while traversing 
the transportation network. This “digital exhaust” or breadcrumbs of the travelers’ location over 
time while traveling is the common denominator of the first three types of emerging sources, and is 
one of the cornerstones of the U.S. DOT CV program. At the moment, we will disregard additional 
data elements, such as trip purpose, motivation, vehicle condition information, and so on (that might 
be available from one source, but not another) for the purpose of estimating the comparative volumes 
and velocity of incoming information from the emerging sources. For the fourth category of “other 
sources,” such as 3D Light Detection and Ranging (LiDAR) point clouds, high resolution maps, etc. 
photo snapshots, video, etc., we list additional assumptions in that subsection. A consolidated list of 
assumptions is provided here. Narrative discussion of the basic assumption of cumulative data from 
one traveler per day follows. 

List of All Assumptions 
1. The “digital exhaust” data of travelers’ trajectories in the system is the primary data element 

used to estimate data volume and storage requirements. 

2. One data point in a trajectory is 1KB in size (speed, location, acceleration, and various other 
status elements). 

3. A typical day is a weekday where most adult persons are typically working and traveling for 
the purposes of commuting to and from a workplace or school or performing their work duties 
by traveling. 

4. Travelers spend 60 minutes in a typical day in travel. 

5. Security credentials on the U.S. DOT CV system change once every 5 minutes. 

6. Data points in a trajectory are collected once every 10 seconds of travel. 

7. Second by second updates of digital exhaust are probably sufficient for most TSM&O mobility 
applications. 

8. A probe data message trajectory holds 32 individual data points. 

9. Cumulative data from one traveler per day in Probe Data Messages (PDM), commercial 
connected vehicles, or connected traveler apps is 500KB. 

10. There are approximately 345,000,000 personal devices in the U.S. that could provide 
trajectory data. 

11. Just because an app is installed in a smartphone does not mean the data will be transmitted 
unless the user activates the app. 

12. In 2016, 1 percent of those personal devices (3,500,000) currently are being used, and the 
data is available to DOTs. 

13. There are 1,250,000 miles of roads in the U.S.; meaningful for TSM&O. 



Chapter 4 Projected Nature of Emerging Data Sources 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  24 

14. An average road segment is 0.25 mile, resulting in a segmented map of the U.S. with 
5,000,000 segments. 

15. Status updates of each segment are provided by a third-party data provider once per minute. 

16. The status update for one segment is 1KB. 

17. Dedicated Short-Range Communication (DSRC) range is 1,500ft. 

18. Vehicles interacting with a DSRC Roadside Unit (RSE) travel at 50ft/s. 

19. In 2016, interactions of vehicles with Radio Frequency Identification (RFID) readers occur two 
to four times per day and negligibly contribute to today’s or future year’s predictions of data 
loading. 

20. In 2016, there are 300,000 traffic signals in the United States. 

21. A National Transportation Communications for ITS Protocol (NTCIP) poll message for signal 
and detector status is 2KB. 

22. In 2016, 60 percent of traffic signals in the U.S. are polled once per second. 

23. Other connected infrastructure devices are polled two times per minute with a 2KB status 
message per poll. 

24. In 2016, there are 60,000 connected closed circuit television (CCTV) in the U.S. and 90,000 
other devices. 

25. CCTV streams are 350Kbps. 

26. A high-definition (HD) map of a 0.25m segment is 5MB. 

27. 3D video streams at 60 frames per second is 32Mbps at 1080p resolution. 

28. A 3D video of a 0.25m segment has a video file size of 318MB. 

29. A 3D point cloud of a 0.25m segment is the same size as a 3D video. 

30. A 3D movie or 3D point cloud cannot in the foreseeable future be streamed wirelessly over 
existing or foreseeable technologies. 

31. 3D image snapshots would be transmitted once per 10 seconds during an incident. 

32. 3D images are 30MB each. 

33. Incidents during which 3D images are broadcast from the site last 30 minutes. 

34. Aggregated transactional data is not of appreciable volume or velocity to be considered 
further. 

35. A typical agency has 1,000,000 travelers. 

36. A typical agency has 1,000,000 registered vehicles. 

37. A typical agency has a travel network comprising 50,000 segments. 

38. A typical agency has 1,000 traffic signals, 300 CCTV, and 200 other connected devices. 

39. In 2016, a typical agency manages 30 incidents in a typical day. The number of incidents in 
2021 and 2026 does not change. 
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40. In 2016, 1 percent of travelers in the region of a typical agency use a connected traveler app. 

41. In 2021, 20 percent of vehicles are DSRC connected vehicles, and 20 percent of all signals 
are DSRC signals. 

42. In 2026, 50 percent of vehicles are DSRC connected vehicles, and 50 percent of all signals 
are DSRC signals. 

43. In 2021, 15 percent of travelers use connected traveler apps, and 15 percent of vehicles 
return commercial connected vehicle data. 

44. In 2026, 50 percent of travelers use connected traveler apps, and 50 percent of vehicles 
return commercial connected vehicle data. 

45. In 2021, 70 percent of traffic signals are connected and in 2026, 80 percent of traffic signals 
are connected. 

46. In 2021, there are 15,000 additional CCTV and 15,000 additional other devices connected to 
DOT networks. 

47. In 2026, there are 50,000 additional CCTV and 50,000 additional other devices connected to 
DOT networks. 

48. In 2021, 6 percent of incidents are covered by 3D video feeds. 

49. In 2026, 16 percent of incidents are covered by 3D video feeds. 

50. In 2021, all regions of the U.S. have a comprehensive HD map. 

51. In 2026, all regions of the U.S. have a comprehensive 3D HD digital map. 

Cumulative Data Load for One Traveler for One Day 
Each Basic Safety Message is roughly 320 bytes in size. (Federal Communications Commission 
(FCC), Accessed May 13, 2016, https://apps.fcc.gov/.) The Vehicle Infrastructure Integration (VII) 
Wireless Access in Vehicular Environment (WAVE) Short Message (WSM) was estimated at 1.5KB 
per message. We split the difference here for this analysis and assume that the basic 
breadcrumb/snapshot is 1KB in size. The Probe Data Message holds 32 snapshots and Security 
Credential Management System (SCMS) certificates are changed once per five minutes, so we 
surmise that one PDM will be collected for each 5-minute interval (assuming proximity to a Roadside 
Unit (RSU) during that time), or 9.375 seconds between breadcrumbs. We assume that most travelers 
spend ~60 minutes per day (or 3600s transmitting this information) traveling, whether they use taxi, 
bike, walk, transit, carpool or drive alone. This results in tracking approximately 385 breadcrumbs (one 
snapshot for each ~10s) per traveler per day. Rounding up for overhead and to simplify the 
calculations, we estimate the data load per traveler across the sources that provide general traveler 
trajectory information to be 500KB/traveler/day. Regardless of source (commercial CV, connected 
traveler app, RSU/ On Board Unit (OBU), etc.), it seems reasonable for the purpose of volume 
estimation to assume that once-per-10-seconds tracking of individual user breadcrumbs is sufficient 
for many if not most TSM&O applications. 
 
Discussions of additional assumptions and calculations of other data loads are provided in each 
section. Note if these assumptions or calculations are off by 25 to 50 percent in either direction (high 
or low), the conclusions reached regarding the need for advanced tools and technologies remain 
unchanged. 

https://apps.fcc.gov/
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Current Year 
In this section, we estimate the levels of data that currently are consumed/available from the four 
categories and subcategorizations of emerging data sources: 

• Connected travelers. 

• Commercial connected vehicles. 

• Open connected vehicles (U.S. DOT/DSRC). 

• RFID/Wi-Fi. 

• Other sources. 
 
These current year (2016) estimates will then be extrapolated to future years based on estimated 
growth rates of each technology, data source, and/or applications. The estimates provided here are 
intended to illustrate the relative scope and size of the emerging sources. Note also that all sources 
may not be needed if focusing especially on the digital exhaust of individual vehicles and travelers. 
Some agencies may opt to obtain data from one source, obviating the need to obtain it from another. 
For example, if an agency developed a regional connected traveler app, provided the app to citizens 
for free, and the app was adopted regionally by enough users; it might not be necessary to also 
purchase connected vehicles’ digital exhaust data from third-party providers. Similarly, investments in 
applications to obtain data from connected vehicles may reduce the need for agencies to invest in 
other traditional technologies for TSM&O such as connected infrastructure. For this exercise to 
estimate the total data volumes, however, we neglect these cannibalization issues with respect to an 
agency selecting one or another to provide similar information.  

Connected Travelers 
As of 2015, Pew research indicates that 68 percent of all Americans have smartphones, and 
45 percent own tablet computers. Upwards of 50,000,000 additional smart watches and athletic 
wearables may be available to provide traveler-related data as well. (Pew Research Center, “U.S. 
Technology Device Ownership 2015,” Accessed May 13, 2016, 
http://www.pewInternet.org/2015/10/29/technology-device-ownership-2015.) However, since many of 
them do not actually include global positioning system (GPS) tracking capabilities, we will discount the 
number of wearables by 50 percent.  
 
Using round numbers and a U.S. population estimate of 320,000,000, this equates to: 

• 218,000,000 smartphones. 

• 144,000,000 tablets. 

• 25,000,000 wearables with GPS. 
 
Tech-focused people may carry a smartphone, have a connected tablet in their backpack, and wear a 
smartwatch all at the same time. For the sake of simplicity, we estimate that approximately 25 percent 
of travelers are carrying multiple smart devices at any given moment, which reduces the number of 
tablets and wearables by 25 percent and results in 345,000,000 potential devices that could provide 
traveler data. Currently, smartphone Operating System (OS) developers (Google, Apple, Microsoft, 
RIM, etc.) have not attempted and will probably not attempt to monetize users’ travel data for the DOT 
market. So the potential number of individual devices for Connected Traveler information is limited to 

http://www.pewinternet.org/2015/%E2%80%8C10/29/technology-device-ownership-2015
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the number of people who have opted to share their mobility data through existing commercial traveler 
information and mobility apps, future potential “smart city” apps, or “My511” public or public-private-
partnership (PPP) apps. While Waze may have more than 90 percent market penetration in Israel, the 
adoption rate in the U.S. is much lower. We surmise that ~1 percent of existing smartphone, tablet, 
and wearable users have “opted in” for data sharing or are using an existing app that currently can 
provide data related to travelers to an agency DOT, or in these round numbers, 3,500,000 current 
connected travelers. At 500KB per traveler per day, the total data load becomes approximately 
1.75TB per day. Penetration levels of new users of connected traveler applications will be used to 
estimate growth of data from this source for 5- and 10-year horizons. 

Commercial Connected Vehicles 
Commercial connected vehicles include 3G and 4G connections from the vehicle’s infotainment 
system or embedded/aftermarket in-car systems installed by a third-party for vehicle tracking and data 
collection. There currently are roughly 250,000,000 registered vehicles in the United States. (U.S. 
Department of Transportation, Office of the Assistant Secretary for Research and Technology, Bureau 
of Transportation Statistics, “Number of U.S. Aircraft, Vehicles, Vessels, and Other Conveyances,” 
Accessed May 13, 2016, 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html
/table_01_11.html.) Approximately 16,000,000 vehicles were sold in the U.S. in 2013. We estimate 
perhaps 5,000,000 vehicles today have 3G/4G connected features. But none of these sources 
currently are being marketed to DOT as data sources for TSM&O uses. The road mileage fee as an 
alternative to gasoline taxes offers the best potential option for data to be shared with DOTs on a 
large-scale basis, but requires significant legislative changes to enable this policy in every State. 
(Oregon DOT, “MyOReGO | A new way to fund roads for all Oregonians,” Accessed May 13, 2016, 
http://www.myorego.org.) We are thus left with third-party vehicle tracking and data collection systems 
such as INRIX, HERE, TomTom, Garmin, etc. which have monetized the vehicle status information 
(primarily location and speed) for sale to DOTs on a subscription basis covering their area of influence 
(a State or region). Lacking a reliable estimate of existing commercial connected vehicles, we use the 
5,000,000 estimate of currently enabled 3G/4G privately owned vehicles as the estimate of vehicles 
used by these aggregation services, combined and available across all of the services. These 
services do not provide all vehicle trajectories but rather aggregate the information into lists of 
vehicle speeds per segment across a network of roads to the DOT. 

As of 2013, there are over 4.1 million miles of roads in the United States. (U.S. Department of 
Transportation, Office of the Assistant Secretary for Research and Technology, Bureau of 
Transportation Statistics, “Public Road and Street Mileage in the United States by Type of Surface(a) 
(Thousands of miles),” Accessed May 13, 2016, 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html
/table_01_04.html.) If we exclude local roads, there are over 1.25 million miles of freeway, arterial and 
collector roads. (U.S. Department of Transportation, Federal Highway Administration (FHWA), Policy 
and Governmental Affairs, Office of Highway Policy Information, “Highway Statistics 2013:  User’s 
Guide,” Accessed June 27, 2016, http://www.fhwa.dot.gov/policyinformation/statistics/2013.) Based on 
a sample of segment data from a leading traffic data provider for a medium sized MPO, we assume 
an average segment length of ¼-mile. A segmented list of road sections for the entire U.S. road 
network would therefore total more than 5,000,000 segments. If each segment is updated by these 
services to the DOT on a minute-by-minute basis, and each segment status update is roughly the size 
of a single Basic Safety Message BSM (~1KB), the total data load from aggregation services 

http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.myorego.org/
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_04.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_04.html
http://www.fhwa.dot.gov/policyinformation/statistics/2013
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(assuming a DOT buys only one service and not multiple that cover the same road segment), is thus: 

1440 minutes / day * 5,000,000 segments * 1KB = 7.2TB per day 

These data rates will grow marginally as new road segments are added to the road network. 
Penetration rates of new services for commercial CV data will be estimated then for projections of 
data from this source for 5- and 10-year horizons.  

U.S. Department of Transportation/Public Connected Vehicles 
As of 2016, there are fewer than 10,000 vehicles equipped with U.S. DOT connected vehicle 
technology across the U.S. and less than 200 RSUs. With the Connected Vehicle Pilot Deployment 
projects scheduled for 2018, these numbers should roughly double. There are two components to the 
emerging data supplied by U.S. DOT connected vehicles:  1) the PDMs; and 2) the detailed BSM 
digital exhaust when in range of an RSU. The numbers of equipped vehicles that exchange 
information with existing RSUs today is not relevant in comparison to the other data sources. For the 
purpose of future estimation, we estimate again that a single vehicle will generate approximately 
500KB of data in PDMs during the ~60 minutes of travel per day. The penetration rates of RSUs will 
be used to determine the actual (lower) predicted data load for the 2021 and 2026 time horizons. For 
burst transmissions of detailed BSM exhaust when in range of an RSU we estimate the range of the 
DSRC coverage at ~500m or 1,500ft and an average vehicle travel speed of 35mph or 50ft/s. The 
total range of the vehicle approaching and departing the view of the RSU, would be a distance of 
3000ft, or 60s in range. At 10KB per second (assuming each BSM is 1KB), the data transmission for 
one interaction would be 600KB/interaction. The penetration rates of RSUs will be used to 
determine the actual predicted data load for the 2021 and 2026 time horizons. In 2016, the data from 
public connected vehicles is ~zero for a typical agency. 

Radio Frequency Identification Data 
Private and public-private RFID readers are not commonly shared with DOTs due to the embedded 
Personally Identifiable Information (PII) issues. If they were to be shared in the future, it would likely be 
a Cloud Application Programming Interface (API) connection from the private or public-private 
operator to a DOT Cloud (a cloud system owned, operated, or leased by DOTs) or physical server. For 
the purpose of growth rate estimation, we surmise that RFID information in the form of Bluetooth and 
Wi-Fi travel time data collection systems are considered connected infrastructure and captured in that 
category of data. Other commercial CV applications based upon RFID information would be included 
in the data rates estimated for commercial CV sharing and thus are not captured here under a 
separate category. Furthermore, the number of interactions of a Connected Vehicle or Traveler with 
RFID readers is perhaps two to four times per day. At a similar per-transaction data transfer as a 
single BSM (~1KB, even at 10KB) the impact on the data loading analysis is negligible when 
compared with the other sources and is thus ignored.  

Connected Infrastructure 
As of 2016, there are more than 300,000 traffic signals in the United States. (Institute of Transportation 
Engineers, “National Traffic Signal Report Card, 2012,” Accessed at 
http://library.ite.org/pub/e265477a-2354-d714-5147-870dfac0e294.) Additional infrastructure devices 
include CCTV cameras, Dynamic Message Signs (DMS), ramp meters, fog warning, wind warning, 
detector stations, weigh-in-motion stations, lane control systems, dynamic speed limit signs, school 

http://library.ite.org/pub/e265477a-2354-d714-5147-870dfac0e294
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zone flashers, Bluetooth/Wi-Fi readers, and more. Nationally, these additional devices combined 
might total 100,000 additional devices. Traffic signal status is typically monitored on a second-by-
second basis. The status message used in most Standard protocols (NTCIP, AB3418E) is around 2KB 
per poll. For 24-hour per day connectivity, the data load for an individual traffic signal is 24 x 60 x 60 x 
2KB = 173MB/day. Not all of the traffic signals in the U.S. are constantly connected as there are still 
many dial-up systems and unconnected devices. For estimation purposes we surmise based on our 
experience with State and Local agencies that perhaps 60 percent of the 300,000 current traffic 
signals currently are polled 24x7. Thus the national load in 2016 for traffic signal data is around 
31TB/day. Other devices such as system detection, DMS, weather stations, and so on are typically 
polled on a 20 to 30 second basis. With a similar 2KB poll message for each device, data load for an 
individual device would be estimated at 24 x 120 (60 minutes x 2 polls per minute) x 2KB = 
5.8MB/day. Thus the national load for 100,000 of these devices totals 0.58TB/day. The total of the 
two categories (traffic signals and other devices) is roughly then 32TB/day. Streaming video is a 
popular infrastructure technology for TSM&O and amasses significant storage requirements if stored. 
According to the American Association of State Highway and Transportation Officials (AASHTO) 
Footprint analysis report, there are over 10,500 CCTV for freeway monitoring in 2014. Arterial 
monitoring cameras are deployed by local and regional agencies typically between 1:10 and 1:1 ratios 
of traffic signals to cameras. As an average, we assume a 1:5 deployment of signals to cameras for 
an additional 60,000 CCTV deployed at intersections. A 350Kbps video stream is approximately 
4GB/day if recorded second-by-second, resulting in a national potential daily load of streaming video 
of 70,500 x 4GB/day = 282TB/day. 

Other Emerging Sources 
As of 2016, there is essentially no sharing or storing of 3D LiDAR or mobile video feeds from 
connected or automated vehicles for TSM&O. HD maps also are not consumed by TSM&O agencies 
yet. These products would likely be consumed based on segmentation of a network similar to 
commercial connected vehicle data or traditional digital maps. A segmented list of road sections for 
the entire road network of the U.S. (excluding local roads) is estimated at 5,000,000 segments. HD 
maps and 3D resources are not streaming services, and the content describing each segment of an 
HD map is estimated at 5MB (this is the typical size of most detailed CAD drawings of quarter-mile 
roadway sections). The entire database for the U.S. would encompass approximately 25TB. A 3D 
point cloud or 3D stereoscopic feed for a 0.25km segment might require a total video file size of 
318MB (3D video is approximately 32Mbps for 1080p/60fps for one field of view; six cameras are 
typically needed at minimum for a 360-degree 3D movie. A 0.25km segment is traversed by a vehicle 
at 35mph, 50ft/s in 16.5s). A 3D point cloud would be estimated to be roughly the size of a 3D 
stereoscopic video at 318MB per segment. Thus, a 3D map of the U.S. road network would total 
1.6PB in data storage requirements. These assets, like HD maps, would not be updated on a daily 
basis (and no agency would reasonably have use for or need the entire coverage area. Perhaps 3D 
feeds for specific segments or areas would be obtained from probes during incidents or events. Real-
time delivery of streaming high-resolution 3D content might require more than 192Mbps of bandwidth, 
which is way outside of the estimates for upload support for 5G wireless (current upload speeds of 4G 
wireless are approximately 5Mbps). Thus a real-time feed might consist of a sequence of some 3D 
“snapshots” being delivered from the probes to a Traffic Management Center (TMC) instead of a 
continuous stream. We assume an average incident duration of 30 minutes which would result in a 
series of 180 3D images (one every 10 seconds). Each 3D image is approximately 30MB 
(6 1920x1080 24bit color images), for a total data feed per incident of 5.4GB/incident. 
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Aggregated transactional data such as the cross modal freight flows stored and analyzed by Iowa 
DOT, for example, are on the order of 69MB per year for the Freight Analysis Framework file for 2013. 
(U.S. Department of Transportation, Federal Highway Administration, Freight Management and 
Operations, Office of Operations, “Freight Analysis Framework,” Accessed June 27, 2016, 
http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4 ). Disaggregated information might 
increase this level of information by a factor of 100,000 to 6.9TB/year. If all disaggregated flows were 
shared with a DOT on a daily basis, this would comprise 19GB/day. Aggregated data is not of 
considerable size to be relevant in the conversation of additional resources and disaggregated 
transactions are unlikely to be shared with DOT/TSM&O agencies in the foreseeable future. 
 
Aggregated transactional data such as the cross modal freight flows stored and analyzed by Iowa 
DOT, for example, are on the order of 69MB per year for the Freight Analysis Framework file for 2013. 
(U.S. Department of Transportation, Federal Highway Administration, Freight Management and 
Operations, Office of Operations, “Freight Analysis Framework,” Accessed June 27, 2016, 
http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4.) Disaggregated information might 
increase this level of information by a factor of 100,000 to 6.9TB/year. If all disaggregated flows were 
shared with a DOT on a daily basis, this would comprise 19GB/day. Aggregated data is not of 
considerable size to be relevant in the conversation of additional resources and disaggregated 
transactions are unlikely to be shared with DOT/TSM&O agencies in the foreseeable future. 

Complications of the Confluence of Connected Travelers with 
Commercial Connected Vehicles 
The current “battle for the dashboard” between Original Equipment Manufacturers (OEM), major 
mobile operating system providers (Google, Apple, Microsoft, RIM, etc.) complicates the analysis of 
data growth rates of connected travelers and connected vehicles. Almost all current OEM vehicles 
have tethering capability for drivers to use their Bluetooth-enabled cellular phones hands-free in their 
vehicle. Google, Apple, and others are planning for more comprehensive integration with drivers’ 
smartphone apps to be available directly on the dashboard via Apple Carplay and Android Auto 
products, to name a few. This significantly blurs the lines between a Commercial CV and a connected 
traveler. Perhaps in 10 to 15 years the delineation will be between Commercial CVs being truly 
commercial (i.e., taxis, delivery vehicles, and other business-owned vehicles) where the driver is an 
employee, and all other data will be considered as originating from the connected traveler applications 
whether they are driving in their own vehicle or a rented one. For the purpose of the data loading 
analysis in this report, we overlook this confluence issue since there is such uncertainty in predicting 
future events.  

Typical Agency Data Loads 
One agency does not manage the entire U.S. for TSM&O purposes, so it is less relevant to evaluate 
the data loading for the entire U.S. than for a single system which would have to ingest, process, and 
analyze all of this information at once. Agencies come in a variety of organization and jurisdictional 
control structures. There are perhaps six canonical types of agency organizations that are responsible 
for existing data ingestion and will be responsible for ingestion of future connected traveler and 
connected vehicle data:   

• State DOT, focused on freeways only (e.g., Tennessee DOT). 

http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4
http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4
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• State DOT, freeway/arterial responsibilities (e.g., Virginia Department of Transportation 
(VDOT), Caltrans, Utah Department of Transportation (UDOT)). 

• Combined State DOT and City/County (e.g., Austin Combined Transportation, Emergency, and 
Communications Center (CTECC)). 

• Multi-State coalition (e.g., I 95 corridor). 

• Local city/county or other municipal (isolated or “rural,” e.g., Lubbock, Texas). 

• Local city/county or other municipal (urban/suburban, e.g., Seattle, Miami/Dade County). 
 
For the purpose of projecting data loads for a “typical” agency in the current year, we assume the 
following: 

Table 1. Data loading assumptions for a “typical” agency (2016). 

Agency Characteristic Projected Data Load 

Regional population under jurisdiction 1,000,000 adult travelers 

Regional population of vehicles 1,000,000 registered vehicles 

Regional population of connected infrastructure 1,000 traffic signals, 200 closed-circuit television, 
300 additional devices 

Regional road network 50,000 segments 

Connected vehicles ~zero 

Roadside units ~zero 

Regional incidents per day 30 

 

Projected Growth Rates 
The American Association of State Highway and Transportation Officials (AASHTO) footprint analysis 
provides the basis for growth rate predictions for public connected vehicles as shown in figure 1. 
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Figure 1. Graph. Predicted growth rates of public connected vehicles. 

(Source:  American Association of State Highway and Transportation Officials, 2014.) 

As shown in the figure, the AASHTO analysis provides three potential growth rates assuming a 
“strong” mandate of immediate adoption of the DSRC technology (1-year mandate), a “medium” 
mandate of adoption of the technology over a five-year timeframe, and “weak” adoption of the 
technology with only a recommendation by National Highway Traffic Safety Administration (NHTSA) 
but no mandate (“15 year organic”). For the purpose of our data loading estimation, we use the 
“medium” growth trajectory which results in 20 percent penetration of the technology in 2021 and 
50 percent penetration of the technology by 2026. For vehicle-to-infrastructure (V2I) applications and 
the resulting potential value to TSM&O, the infrastructure deployment must keep pace with the fleet 
penetration, so we use the same numbers (20 percent and 50 percent) for the penetration levels of 
RSUs for the Nation and for our typical agency. Using the assumption of 250,000,000 vehicles in the 
U.S., this leads to 50,000,000 connected vehicles in 2021 and 125,000,000 connected vehicles in 
2026 and thus per-day data rates nationally of 25TB/day for the probe messages (500KB) in 2021 
and 62.5TB/day in 2026. For the RSU-vehicle interaction data, we assume a 20 percent penetration 
rate of RSUs in 2021, in which a vehicle passes an RSU on 20 percent of their travel or 12 minutes of 
their 60 minutes of travel. Using the average in-range estimate of one minute, this results in 12 RSU 
interactions for a total of 600KB*12 = 7.2MB/day/vehicle or a national total of 360TB/day in 2021 and 
900TB/day in 2026 for RSU-vehicle interactions. Adding together the daily probe data PDMs and the 
RSU interactions, the total load is 385TB/day in 2021 and 963TB/day in 2026. Notably the burst 
transmissions from CVs to RSUs will be shown to vastly outpace the other sources. This implication is 
important for the design and implementation of an appropriate PDM, and compression and data 
aggregation approaches for the RSU-OBU interactions. These topics will be addressed in a 
subsequent report. 
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Growth Rates of Connected Travelers 
Figure 2 indicates projected growth rates of use and availability of connected traveler applications with 
approximately 15 percent penetration in 2021 and 50 percent penetration by 2026. Strong adoption 
(i.e., “killer apps” that provide significant value to the user and return on investment (ROI) from 
developers and data providers) and removal of PII barriers could raise adoption to perhaps 70 percent 
by 2026. Continual issues with PII and lack of interest from data providers (low ROI) could see 
significantly lower (20 percent) availability of connected traveler data in 10 years. Obviously these are 
approximations, but for the purposes of sizing potential Big Data tools and technologies for a typical 
TSM&O agency, these values are reasonable assumptions for estimating the potential data loads. 
 

 
 

Figure 2. Graph. Connected traveler population growth rate over time. 
(Source:  Kimley-Horn and Associates, Inc., 2016) 

Using the assumption of 345,000,000 connected travelers and the 500KB/day estimate of the data 
load per traveler at 15 percent penetration in 2021 and 50 percent penetration in 2026 results in per 
day national data loading of 25.9TB/day and 86.25TB/day, respectively. This is roughly 10 percent of 
the loads from CV-RSU interactions.  

Growth Rates of Connected Commercial Vehicle Services 
Figure 3 indicates projected growth rates of use and availability of connected commercial vehicle data 
and applications with approximately 15 percent penetration in 2021 and 50 percent penetration by 
2026. It is likely that third-party providers will partner with OEMs to provide new data products (i.e., 
anonymized high-resolution trajectories, origin-destination tables, etc.) assuming the PII issues related 
to vehicle usage can be suitably addressed. Similarly to connected travelers, strong adoption and 
removal of PII barriers could raise adoption rates to perhaps 70 percent by 2026. Continual issues 
with PII and lack of interest from data providers (low-ROI willingness of DOTs to pay for data) could 
see significantly lower (20 percent) availability of connected commercial vehicles data in 10 years. 
Obviously, these are approximations, but for the purposes of sizing potential Big Data tools and 
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technologies for a typical TSM&O agency, these values are reasonable assumptions for estimating 
the potential future data loads. 
 

 
 

Figure 3. Graph. Connected commercial vehicle population growth rate over time. 
(Source:  Kimley-Horn and Associates, Inc., 2016) 

Using the assumption of 250,000,000 vehicles this leads to 37,500,000 commercial connected 
vehicles in 2021 and 125,000,000 commercial connected vehicles in 2026. At 500KB per CV per day, 
the resulting data loads are 18.75TB/day in 2021 and 62.5TB/day in 2026. 

Growth Rates of Connected Infrastructure 
Figure 4 indicates projected growth rates of use and availability of connected infrastructure data with 
approximately 70 percent penetration in 2021 and 80 percent penetration by 2026. This is dominated 
by ongoing efforts by agencies to connect their traffic signals with high-speed, agency-owned or 
leased IP networks. Reduction in costs, availability of funds, and renewed emphasis on connectivity, 
particularly related to the benefits potential for V2I applications, could raise penetration to perhaps 
90 percent by 2026. Obviously, these are approximations, but for the purposes of sizing potential big 
data tools and technologies for a typical TSM&O agency, these values are reasonable assumptions 
for estimating the potential future data loads. 
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Figure 4. Graph. Growth in connected infrastructure (existing) population over time. 
(Source:  Kimley-Horn and Associates, Inc., 2016) 

In addition to connecting existing devices, agencies are continually purchasing new devices and new 
sensor systems such as emissions sensors, bridge monitoring sensors, radiation detectors, and the 
like. We estimate based on “medium” levels of adoption of new devices that 15,000 new devices 
would be deployed in 5 years and 50,000 new devices in 10 years nationwide. For CCTV, we assume 
the same growth with 15,000 new CCTV in 2021 and 50,000 in 2026. 

Figure 5. Graph. Growth in connected infrastructure (new devices) population over time. 
(Source:  Kimley-Horn and Associates, Inc., 2016) 
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Using these assumptions, 70 percent of the 300,000 existing traffic signals at 173MB/day and an 
additional 115,000 other devices (100,000 connected devices today plus an additional 15,000 
devices) at 5.8MB per day, and 85,500 CCTV at 4GB per day results in a daily national load of 379TB 
per day in 2021 (dominated 90 percent by CCTV). In 2026, with 80 percent of the 300,000 signals 
and 150,000 additional devices connected, and 120,500 CCTV the daily national load is thus 524TB 
per day (92 percent video). 

Growth Rates of Other Sources 
Figure 6 indicates projected growth rates of use of 3D video devices for incident response 
management as a percentage of all incidents that occur. This is primarily driven by agency investment 
in the technology and the payoff of such onsite telepresence on management effectiveness. With such 
uncertainty regarding the technology and the usefulness of the application to TSM&O agencies, we 
forecast weak adoption of the technology in 2021 at 6 percent coverage of incident occurrence and 
16 percent coverage of incident occurrence by 2026. For other sources such as HD maps, we 
estimate that by 2021 all regions of the U.S. have available a comprehensive HD map. By 2026, all 
regions of the U.S. are assumed to have available a comprehensive 3D HD digital map. 

 

 
 

Figure 6. Graph. Growth in percentage of incident coverage by 3D mobile cameras. 
(Source:  Kimley-Horn and Associates, Inc., 2016) 

Summary of Growth Rates of Emerging Data Sources 
Table 2 summarizes the daily data storage loading expected for the entire United States during year 1 
(2016), cumulative through year 5 (2021), and cumulative through year 10 (2026). 
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Table 2. Summary of daily data volume for the entire United States. 

Source Data Volume per 
day per device 

Today 
(2016) 

5 Years 
(2021) 

10 Years 
(2026) 

Connected Travelers via 
3rd party 

~500KB 1.75TB 26TB 86TB 

Connected vehicles 
(commercial) 

~1KB per segment 7.2TB 7.5TB 8TB 

Connected vehicles 
(commercial—future) 

~500KB (nonaggregated) ~zero 18.75TB 62.5TB 

Connected vehicles 
(public/dedicated short-
range communications) 

~600KB per interaction + 
500KB/day (probe) 

~zero 385TB 900TB 

Connected infrastructure ~173MB (signal) and 
~5.8MB (other device) 
~4GB (video) 

314TB 379TB 524TB 

Other sources ~5.6GB/incident ~zero 1.68TB/day 28GB/day 

Total  323TB 820TB 1609TB 

 
Calculation methods for the total daily data loading of each data source category for 2021 and 2026 
are discussed in the previous sections for each type of emerging data source. 

Typical Agency Data Growth Rates 
As indicated earlier, one agency does not (and will not) manage TSM&O activities for the entire U.S., 
so it is less relevant to evaluate the data loading for the entire United States as if one system would 
have to ingest, process, and analyze all of this information at once. 
 
For the purpose of projecting data loads for a “typical” agency we assume the following: 

Table 3. Data loading assumptions for a “typical” agency. 

Agency Type Projected Data Load 

Regional population under jurisdiction 1,000,000 adult travelers 

Regional population of vehicles 1,000,000 registered vehicles 

Regional population of connected infrastructure 1,000 traffic signals, 300 additional devices, 200 
closed-circuit television 

Regional road network 100,000 segments 

Connected vehicles ~zero 

Roadside units ~zero 
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With these round number assumptions the data loads of “today” (2016) for a typical agency are 
estimated to be approximately: 

Table 4. Data loading estimations for a “typical” agency. 

Data Type Density Data Load 

Connected travelers 1% of 1,000,000 (10,000) 5GB/day (0.005TB) 

Commercial vehicles 1% of 5,000,000 segments 72GB/day (0.072TB) 

Commercial vehicles (future) 0% of 1,000,000 vehicles ~zero 

Connected vehicles ~zero ~zero 

Connected infrastructure 1000 signals (60%), 300 other, 200 
closed-circuit television 

975GB/day (0.975TB) 

Other sources ~zero ~zero 

 
Using the projected penetration rates for each of the Emerging Data Sources listed previously and 
using the same calculations detailed in the national data loading analysis in the previous section, 
Table 5 summarizes the data loading per day for a typical agency. In 2021, the data loads from 
connected traveler and commercial connected vehicles emerging sources are on par with the current 
data loading from connected infrastructure. The data loading from public connected vehicles would be 
roughly triple the other sources combined in 2021 and treble in 2026. 

Table 5. Summary of daily data storage loading for a typical agency. 

Source Data Volume 
per day per 
device 

Today (2016) 5 Years (2021) 10 Years (2026) 

Connected travelers via 
3rd party/opt-in app 

~500KB (Waze) 0.005TB 0.075TB 0.25TB 

Connected vehicles 
(commercial) 

~1KB per segment 0.072TB 0.075TB 0.1TB 

Connected vehicles 
(commercial—future) 

~500KB 
(nonaggregated) 

~Zero 0.075TB 0.25TB 

Connected vehicles 
(public/dedicated short-
range communications) 

~650KB per 
interaction + 500KB 
(probe) 

~Zero  1.53TB 3.6TB 
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Table 5. Summary of daily data storage loading for a typical agency (continuation).  

Source Data Volume 
per day per 
device 

Today (2016) 5 Years (2021) 10 Years (2026) 

Connected infrastructure ~173MB (signal) and 
~5.8MB (other 
device) 
~4GB (closed-circuit 
television) 

0.975TB 1.083TB 1.51TB 

Other sources 3D Video ~zero 11.2GB/day 28GB/day 

Total  1.05TB 2.84TB 5.61TB 

 
Calculation methods for the total daily data loading of each data source category for 2021 and 2026 
are discussed in the previous sections for each type of emerging data source. 

Data Velocity 
In this section we discuss the data velocity and cumulative storage needs for a typical agency. Data 
Velocity is the rate at which data is generated and the rate at which the data needs to be processed. 
There are primarily two categories of data processing, batch, and streaming. Batch processing is for 
analysis done after-the-fact. Data that does not require immediate action can be analyzed 
independently from the real-time performance of the system. Streaming processing enables real-time 
decisionmaking and alerts. Streaming and batch analyses each have their pros and cons, and the 
appropriate method depends largely on the organization’s particular use case and business need. 
Transportation management centers have needs for both streaming and batch data processing. Use 
cases for both will be explored further in a subsequent report. 

Connected Travelers 
Each of the Emerging Data Sources are not transmitted to the DOT at the same rates. This section 
summarizes the data rates for each source or how often each dataset is refreshed. Connected 
traveler information from an existing source such as Waze is updated in the data feed each minute, 
providing new status of anonymized app users. We project that the same delivery mechanism would 
likely be used in 5- and 10-year time horizons. As the volume of connected travelers increases, this 
velocity may become an issue for an individual agency and need big data techniques to adequately 
capture the volume. However, there are specific traveler to infrastructure applications where second-
by-second data from connected travelers is warranted and useful for TSM&O. Pedestrian and bicycle 
detection in particular is a challenge for many agencies across the U.S. and second-by-second 
delivery of user location is critical for effective enabling of traffic signal operations. Some pilot projects 
already have started to undertake this obstacle, such as in Austin, Texas, but with very low numbers of 
cyclists or pedestrians. Scalability of such solutions are likely to require big data treatments to work on 
a citywide scale with hundreds of thousands of road users. 
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Commercial Connected Vehicles 

Similarly, commercial aggregated connected vehicle data based on map-segments is typically 
updated each minute. We anticipate that the existing update methodology will continue in five and 
10 years. This data is not accelerating at the same rate that connected vehicles and connected 
traveler volumes will increase because it is solely dependent on the DOT adding new roads or the 
third-party increasing the density of their map-segmentation. Neither of these are rather likely to have 
significant implications for data velocity. Additional types of products such as origin-destination tables 
and the like would increase the volume, but not the velocity. Future commercial connected vehicles 
data might be delivered in a similar manner to DOT with snippets of trajectories delivered each 
approximately every minute. 

U.S. Department of Transportation/Public Connected Vehicles 
The velocity of U.S. DOT/DSRC connected vehicle data is very different. The vehicle transfers 10Hz 
status updates and probe data messages when in range of an RSU. We denote this as “burst 
transfer.”.” It is unlikely that the velocity would increase even faster than this and it is probably more 
likely that the velocity will decrease as the deployed density of connected vehicles climbs higher and 
higher. Safety applications, such as red-light-running warnings require 10Hz updates, but second-by-
second updates are probably sufficient for TSM&O mobility applications. Some data processing will 
likely take place at the RSU, further reducing the velocity into the TMC. 

Connected Infrastructure 
Status data from connected infrastructure is today either delivered on a second-by-second basis or on 
a 20- to 30-second update interval. In the future, we predict more use of “report on change” 
(sometimes referred to as Simple Network Management Protocol (SNMP) “traps”) methods which 
reduce bandwidth requirements. Although traffic signal status does vary on a 10Hz basis, there are 
many periods of the day (i.e., the middle of the night) when the status remains largely the same and 
there is no need to tell the TMC again that the light is still green and no one is driving by. 
 
Table 6 summarizes the data velocity expected for each emerging data source for a typical agency 
during year 1 (2016), cumulative through year 5 (2021), and cumulative through year 10 (2026). 

Table 6. Summary of data velocity for a typical agency. 

Source Data Volume 
per day per 
device 

Today (2016) 5 Years (2021) 10 Years (2026) 

Connected Travelers via 
3rd party/opt-in app 

~500KB (Waze) Minute-by-minute Minute-by-minute Minute-by-minute 

Connected vehicles 
(commercial) 

~1KB per segment Minute-by-minute Minute-by-minute Minute-by-minute 

Connected vehicles 
(commercial—future) 

~500KB 
(nonaggregated) 

~none Minute-by-minute? Minute-by-minute? 
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Table 6. Summary of data velocity for a typical agency (continuation). 

Source Data Volume 
per day per 
device 

Today (2016) 5 Years (2021) 10 Years (2026) 

Connected vehicles 
(public/dedicated short-
range communications) 

~600KB per 
interaction + 500KB 
probe 

Burst transfer Burst transfer Burst transfer 

Connected infrastructure ~173MB (signal) and 
~5.8MB (other 
device), ~4GB 
(closed-circuit 
television) 

Second by second, 
30-second report 

Second by second, 
report on change 

Second by second, 
report on change 

Other sources ~5.4GB (3D Video) N/A ~10 second 
snapshots 

~10 second 
snapshots 

 

Data Storage 
Data storage for Emerging Data Sources becomes overwhelming if the agency considers storing all 
data ever collected. This currently is being done now by systems such as Regional Integrated 
Transportation Information System (RITIS) and Caltrans Performance Measurement System (PeMS) 
with connected infrastructure and some probe and commercial connected vehicle feeds. The data 
requirements for existing systems are incomparable to the data stores required for the five- and 
10-year time horizons when including the emerging sources; particularly if an agency sees the need to 
store all of the public connected vehicle Basic Safety Messages (BSM), which is unlikely. Potential 
approaches to reducing the data footprint of the BSMs at the TMC through edge processing and data 
aggregation will be discussed in more detail in a subsequent report. We assume for this analysis that 
the penetration rates climb incrementally each year and remain steady for the entire year. 
 
Table 7 summarizes the total data storage required for each emerging data source for a typical 
agency during year 1 (2016), cumulative through year 5 (2021), and cumulative through year 10 
(2026). 
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Table 7. Summary of data storage for a typical agency. 

Source Data Volume 
per day per 
device 

Today (2016) 5 Years (2021) 10 Years (2026) 

Connected Travelers via 
3rd party/opt-in app 

~500KB 1.8TB 73TB 370TB 

Connected vehicles 
(commercial) 

~1KB per segment 5TB 159TB 294TB 

Connected vehicles 
(commercial—future) 

~500KB 
(nonaggregated) 

~Zero 68TB 365TB 

Connected vehicles 
(public/dedicated short-
range communications) 

~600KB per 
interaction + 500KB 
(probe) 

~Zero  1594TB 6546TB 

Connected infrastructure ~173MB (signal) and 
~5.8MB (other 
device), ~4GB 
(closed-circuit 
television) 

38TB 1878TB 4244TB 

Other sources ~5.4GB (3D Video) 1TB 3.6TB 4.6TB 

Total  45.8TB 3776TB 11823TB 

 
 
Assuming a monthly storage cost of $0.03/GB, which is what Amazon currently charges for its 
enterprise data storage (there are several factors in how costs are calculated for various tiers of 
storage and capacities, but this is a planning level estimate), this equates to a cost of approximately 
$1,500/mo for data storage to store all data in 2016 in the Cloud. This grows to a staggering 
$110,000/mo to store more than 3,700TB in 2021, which makes it clear that the raw BSMs and raw 
video simply cannot be stored “forever.” The value of individual BSMs for TSM&O is marginal, at best, 
so aggregation and storage of derived performance measures or summary statistics must be applied. 
Similarly for raw video, analytics will be needed to extract out performance data, or store only 
anomalies or special events. Reducing the BSM and video storage by a factor of 100 by aggregation, 
still results in a cost-prohibitive $40,000/mo for storage of all ~1,300TB from 2016 to 2021 in the 
Cloud. Considering the cost per gigabyte of hard drive storage has dropped by a factor of 46 in the 
past 10 years, the growth in the amount of data (2026 projections are 70 times 2016 estimates) will be 
partially offset by reduced costs for storage, though we may not see the same decreases with the 
growth in higher performance (and higher cost) solid state storage. Multiple strategies will need to be 
applied to determine what data to keep and for how long, similar to the ways in which TSM&O 
agencies manage connected infrastructure information in traditional databases today. 
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Density of Emerging Data Sources in a Typical City 
These growth rates can be summarized visually as shown in the following figures. Figure 7 shows a 
typical city dominated by connected infrastructure, with a few connected travelers and connected 
vehicles. In 2021 (figure 8), connected vehicles and Travelers’ penetration rates begin to overwhelm 
the connected infrastructure and in 2026 (figure 9), the density of connected infrastructure is close to 
complete and connected travelers and Vehicles are widespread throughout the jurisdiction. In each of 
the figures, one icon indicates multiple devices or travelers. RSUs and Infrastructure are represented 
by a scale of 10, connected vehicles by a scale of 100 and Travelers by a scale of 1000. Rough 
approximations of the growth rates for each are shown in each figure for 2021. 

Figure 7. Illustration. A typical agency’s connectedness in 2016. 
(Source:  Kimley-Horn and Associates, Inc., 2016.) 
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Figure 8. Illustration. A typical agency’s connectedness in 2021. 
(Source:  Kimley-Horn and Associates, Inc., 2016.) 
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Figure 9. Illustration. A typical agency’s connectedness in 2026. 
(Source:  Kimley-Horn and Associates, Inc., 2016.) 

This chapter laid out a set of estimates of the volume and velocity of data that may be possible as 
connected vehicles, travelers, and other sources emerge. Even if the assumptions are 25 percent too 
high or too low, the conclusions remain unchanged. Data management and data analysis will 
require Big Data tools and methods if a TSM&O agency seeks to realize its value. Significant 
strategies will be needed to address what to store and for how long in order to maximize cost 
effectiveness for already budget-constrained TSM&O agencies. The next three sections transition to a 
discussion of currently available big data technologies and tools. Chapter 5 discusses trends in the 
use of big data in government and industry. Chapters 6 and 7 identify and compare vendor solutions 
that currently are available in the marketplace. 
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Chapter 5 Industry and Government 
Trends in Big Data 

What is Big Data? 
“In pioneer days they used oxen for heavy pulling, and when one ox couldn't budge a log, they didn't 
try to grow a larger ox. We shouldn't be trying for bigger computers, but for more systems of 
computers.”—Grace Hopper. (Schieber, Philip, “The Wit and Wisdom of Grace Hopper,” Accessed 
May 9, 2016, http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html.) 
 
The purpose of this chapter is to raise awareness of the 
reader in common terms and technologies in the Big Data 
ecosystem. The reader will gain a better appreciation for 
some of the component tools and technologies and 
understand, at an entry level, of what pieces do what. 
Given the predictions of the volume and velocity of 
emerging data sources for Transportation Systems 
Management and Operations (TSM&O) from the previous 
chapter, the reader will understand that current information 
technology (IT) systems are not capable to handle such 
volumes. After reading this chapter, the subsequent 
chapters introduce the readers to common industry 
systems that implement tools and technologies for 
handling massive data sets. The terms and concepts 
introduced in this chapter will be used in subsequent 
chapters. 
 
“Big Data” is the buzzword given to the ongoing phenomenon of data production and consumption on 
a massive scale, and it generally means very different things to different organizations. A Big Data 
problem typically occurs when an organization generates and/or consumes more data than their IT 
infrastructure can handle. However, at what point that organization reaches the stage of Big Data 
depends on the circumstances and capabilities of the organization. For example, a regional grocery 
chain might feel overwhelmed at receiving 100GB per day, where Facebook with over a billion 
users handles approximately 500TB per day. (Gigaom, “Facebook is collecting your data—500 
terabytes a day,” Accessed April 4, 2016,” https://gigaom.com/2012/08/22/facebook-is-collecting-your-
data-500-terabytes-a-day/.) Alternatively, an operations center overseeing a large rural district can 
anticipate a volume of data from emerging data sources that may to them seem significant (less than 
1TB per day), but would pale in the face of the data volume expected from the same data sources at a 
large urban traffic management center (greater than 5TB per day). 
 

Chapter Objectives: 
• Provide definitions and 

descriptions of the moving parts 
of Big Data. 

• Introduce Gartner’s Hype Cycle 
for categorization of technology 
readiness. 

• Categorize tools and 
technologies. 

• Identify trends in each of the 
process model steps. 

• Introduce the key elements of 
Internet of things and explain the 
potential relevance to TSM&O. 

http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html
https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/
https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/
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Data production and consumption have been rapidly growing for far longer than the term Big Data has 
existed, and past solutions have focused on building bigger, better, and faster machines. (Domo, 
“Data Never Sleeps 3.0,” Accessed April 4, 2016, https://www.domo.com/blog/2015/08/data-never-
sleeps-3-0/.) However, with the understanding that data is only going to continue growing at an 
exponential rate (as demonstrated in the forecasts in chapter 4 of this report), it has come to be 
accepted that Big Data is an enduring problem that requires a new paradigm shift. Similarly to Intel’s 
shift from its focus on increasing the clock speed of its microprocessors to multicore architectures, the 
big data paradigm shift is about using clusters of networked computers to distribute tasks in parallel, 
which is far more efficient and scalable than relying on bigger and faster hardware. 

Google is a noteworthy benchmark for embracing this shift. 
In 2003, Google released a report titled “The Google File 
System” describing their solution to the big data problem 
applied to the problem of searching the vastness of the 
Internet for meaningful and relevant information, something 
we take for granted today. (Ghemawat, Sanjay, Gobioff, 
Howard, and Leung, Shun-Tak, “The Google File System,” 
Accessed April 4, 2016, 

The Big Data paradigm shift is about 
using clusters of networked 
computers to distribute tasks in 
parallel, which is far more efficient 
and scalable than relying on bigger 
and faster hardware. 

http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf.) 
Because their search indexes were so large and because search results from the index needed to be 
nearly instantaneous, they devised the Google File System (GFS) is a highly reliable, distributed file 
system that runs on a cluster of inexpensive, commodity hardware. The cluster can be easily scaled 
up by adding individual servers to quickly accommodate rapid changes in data storage and 
processing needs. In addition, it distributed keyword queries to more rapidly return results from a 
rapidly growing user base. The GFS laid the foundation for the design of the Hadoop Distributed File 
System (HDFS)—an open source software framework managed by the Apache Software Foundation 
(Apache) to store and process massive amounts of data quickly and efficiently across multiple nodes. 
(Apache, “What is Apache Hadoop?” Accessed April 4, 2016, http://hadoop.apache.org/.) 

Google released a second report titled “MapReduce:  Simplified Data Processing on Large Clusters” 
in 2004 that described Google’s cost effective approach to quickly process large volumes of data. 
(Dean, Jeffrey and Ghemawat, Sanjay, “MapReduce:  Simplified Data Processing on Large Clusters,” 
Accessed April 4, 2016, 
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf.) 
MapReduce is a batch data processing technique that breaks large tasks into smaller ones to 
be concurrently executed in a distributed fashion across the cluster. The results of each small 
task are aggregated once processing is complete. Google recognized that crawling the Internet and 
indexing keywords lent itself to parallel processing and by devising a framework that did not rely on 
expensive mainframes or super computers, they could scale much more efficiently and cost 
effectively. 

Together, HDFS and the MapReduce computing 
framework have become the foundation of the Hadoop 
ecosystem. While other solutions, which will be discussed 
in this report, gained popularity for a time, Hadoop 
expanded to become an entire ecosystem and has 
adopted nearly every other big data concept within its open 
source suite of tools. The leading big data companies are building their offerings upon this open 
source ecosystem and offering enterprise services for initial set-up, configuration, and ongoing 

While the Big Data landscape is 
rapidly evolving, there is as yet no 
successor on the horizon for 
Hadoop. 

https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://hadoop.apache.org/
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
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support, similar to companies that sell distributions of the open source Linux operating system. While 
the big data landscape is rapidly evolving, there is as yet no successor on the horizon for Hadoop, 
though new projects are continuously adding new functionality and improving the usability of the 
Hadoop ecosystem. 

Characteristics of Big Data 
The five V’s are a good place to start when trying to describe big data. The first four V’s (volume, 
velocity, variety, and veracity) are attributes of the data itself, each requiring additional considerations 
to supplement and modernize traditional systems. While the fifth V (value) is the business benefit that 
can be created using Big Data. 

Figure 10. Illustration. The five V’s of big data. 
(Source:  Deloitte, 2016.) 

Descriptions of the first four V’s are as follows: 

• Volume:  is the total amount of data in existence. Data is constantly being generated at faster
speeds and organizations are interested in collecting more of it for analysis. Infrastructure
scalability becomes paramount as data volumes increase exponentially and storage priorities
must be adapted.

• Velocity:  is the rate at which data is generated and the rate at which the data needs to be
processed. There are primarily two categories of data processing, batch and streaming.
Batch processing is for analysis done after-the-fact and in large chucks at a time. Data that
does not require immediate action can be analyzed independently from the real-time
performance of the system. Streaming processing enables real-time decisionmaking and
alerts by analyzing the data as soon as it arrives. Streaming and batch analyses each have
their pros and cons, and the appropriate method depends largely on the organization’s
particular use case and business need. Transportation management centers have needs for
both streaming and batch data processing, and use cases for both will be explored further in
a subsequent report.
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• Variety:  refers to the different data sources (e.g., connected vehicles, connected travelers,
and connected infrastructure) and types of data being generated (e.g., operational and
relational data, video data, etc.). When an organization is interested in collecting as much
data as possible for analysis, the ability to store and analyze a wide variety is an important
factor to consider. For example, the characteristics of the data may require more complex
data governance (policies describing proper handling and management of data, frequently
related to security and privacy concerns). (Thomas, Gwen, “Defining Data Governance,”
Accessed May 12, 2016, http://www.datagovernance.com/defining-data-governance/.) Other
considerations include storage capabilities for structured, unstructured, and semistructured
data and advanced analysis techniques to make use of complex data (e.g., unstructured
image files).

• Veracity:  refers to the quality of the raw data being received. This includes challenges
organizations face collecting information they can trust with data free of biases, noise
(background data, impossible for machines to understand), abnormalities, or general
inaccuracies. Veracity also can refer to the collection of unwanted data. Organizations may
want to collect as much data as possible, but may not know what to do with it all once they
have it. This is particularly true in our use cases for TSM&O specifically related to the
collection of Basic Safety Messages (BSM). This will be explored further in subsequent
reports. Veracity can play a particularly important role in automated decisionmaking without
human interaction and intervention (e.g., adaptive traffic control, automated incident alerts, or
future concepts for regional congestion pricing or road user charging).

• Value:  refers to the potential that big data offers to unlock new insights, make faster and
smarter decisions, and improve practice in TSM&O. Volume, velocity, variety, and veracity
make big data into the beast that it is to manage. However, to create value out of the
Emerging Data Sources, TSM&O organizations will need to find ways to manage the four V’s
in a way that maximizes the return on investment (ROI) of data as an asset.

The Explosion of Big Data 
The rise of social media and the Internet of Things (IoT) gave birth to the data explosion that 
introduced big data to the general population. (Nammari, Brian, “IoT, Social Media and their Monster 
Child called Big Data, What is next?” Accessed April 4, 2016, https://medium.com/@bnammari/iot-
social-media-and-their-monster-child-called-big-data-what-is-next-899eba9f6b7b#.svyjd5wmg.) The 
Internet and large volumes of data certainly existed before social media and IoT, but the exponential 
growth of data and Internet use that can be seen today requires a new understanding of the changes 
in the data landscape and places more importance on data as an asset than ever before. 

http://www.datagovernance.com/defining-data-governance/
https://medium.com/@bnammari/iot-social-media-and-their-monster-child-called-big-data-what-is-next-899eba9f6b7b#.svyjd5wmg
https://medium.com/@bnammari/iot-social-media-and-their-monster-child-called-big-data-what-is-next-899eba9f6b7b#.svyjd5wmg
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Figure 11. Infographic. Data never sleeps 3.0:  how much data is generated every minute? 
(Source:  Domo, 2015.) 

Social media has led to a steady increase in Internet traffic and data generation with no sign of 
slowing momentum. Domo is a business intelligence software company that released an infographic 
and report called “Data Never Sleeps” in 2011 showing per minute statistics on many of the most 
popular social media platforms, including Facebook, YouTube, Twitter, and Instagram. (Tepper, 
Allegra, “How Much Data is Created Every Minute?” Accessed April 5, 2016, 
http://mashable.com/2012/06/22/data-created-every-minute/#SAV6YUMJSmq7.) According to their 
research, the global Internet population grew 5.6 percent in the previous year and at the time was 
2.1 billion people strong. They released a second report (“Data Never Sleeps 2.0”) in 2013 showing 
an increase in per minute statistics across the board and an increase in global Internet users to 
approximately 2.4 billion people. (Domo, “Data Never Sleeps 2.0,” Accessed April 5, 2016, 
https://www.domo.com/learn/data-never-sleeps-2.) However, most recently in 2015, Domo released 
“Data Never Sleeps 3.0” to show significant increases in per minute statistics of the most popular 
social media platforms and a jump of 18.5 percent to reach approximately 3.2 billion global Internet 
users. (Domo, “Data Never Sleeps 3.0,” Accessed April 4, 2016, 
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/.)  

The Internet of Things is the interconnected system of sensors, wearable tech, phones, smart 
appliances, connected vehicles, and other devices (or things) broadcasting data via the Internet. IoT is 
the overarching concept for innovative ideas like connected cities in which connected travelers (and all 
the devices they carry), connected vehicles, and connected infrastructure will all be capable of 
communicating and interacting with each other to the benefit of organizing citywide system operations. 
IoT data in a connected city would support TSM&O’s Operations Capability Improvement Process 
by providing rich data for planning and budgeting decisions and performance measures. (Federal 

http://mashable.com/2012/06/22/data-created-every-minute/#SAV6YUMJSmq7
https://www.domo.com/learn/data-never-sleeps-2
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
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Highway Administration, “Organizing for Operations,” Accessed May 12, 2016, 
http://www.ops.fhwa.dot.gov/plan4ops/focus_areas/organizing_for_op.htm.) 

The Importance of Big Data in Transportation Systems 
Management and Operations 
The emergence of the transportation data sources identified earlier indicates that Departments of 
Transportation (DOT) will soon be facing significant big data challenges of their own. Connected 
travelers, vehicles, and infrastructure will drive growth in data that will enhance TSM&O; but this new 
data requires an IT infrastructure, processes, and skills capable of handling data acquisition, 
marshalling and analysis. The remainder of this section discusses the big data process model, 
industry and government developments in big data, and emerging data analysis techniques. 

Making Sense of Big Data 
TSM&O organizations will face a number of hurdles when turning their big data opportunities into 
meaningful actions. Without proper planning and consideration, a big data solution can turn into an 
inefficient system with latency and performance issues. Just like a transportation solution for 
congestion in a growing city, a big data solution should be thoughtfully designed before any physical 
construction takes place. The process model depicted in the figure below is a useful way of thinking 
through a big data solution by breaking it into four distinct steps. TSM&O organizations will need to 
evaluate and design a big data solution that holistically considers each of these steps. 

Figure 12. Chart. A big data process model:  acquisition, marshalling, analysis, and action. 
(Source:  Adapted directly from the capgemini big data process model, 2012.) 

http://www.ops.fhwa.dot.gov/plan4ops/focus_areas/organizing_for_op.htm
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Acquisition 
Acquisition refers to the collection and preprocessing of data from a variety of systems within the 
organization (internal sources) and systems outside the organization (external sources). External 
sources of data frequently require more consideration due to differing data formats, additional privacy, 
governance, and security concerns (e.g., rights to use and distribute, sensitivity of the data, corrupt or 
malicious files, etc.). Additionally, methods for ingesting data are continuing to evolve and depend on 
many factors:  1) the volume of data coming in; 2) the data source; 3) how quickly data is needed; and 
4) how much preprocessing of data is necessary (e.g., extract/transform/load (ETL)) before being
ready for analysis. The methods and characteristics of how data is acquired are important to consider
because they can directly affect the capabilities and considerations for how data is marshalled,
analyzed, and acted upon. Currently, data acquisition (or ‘constant acquisition’) for TSM&O agencies
is in the form of polling field devices using National Transportation Communications for ITS Protocol
(NTCIP) or proprietary protocols, accessing data feeds from third parties using Web services and
sharing traveler conditions data with other systems.

Marshalling 
Marshalling refers to the sorting and storing of data. The five V’s are of particular importance when 
it comes to marshalling the data. The high volume, fast velocity, diverse variety, and questionable 
veracity of big data requires a robust and adaptable storage solution to harness its value. A big data 
solution must be capable of storing all types of data an organization is interested in collecting at the 
speed needed to collect and process it for actionable insights. This includes the ability to compress 
and archive legacy data as well as newly collected data that isn’t necessary for immediate or frequent 
analysis. 

Analysis 
Analysis refers to how an organization wants to use their data, including the ability to find insights and 
inform decisions through advanced analytical techniques and visualization. Analysis can be performed 
at many different speeds and can use a wide variety of tools and techniques. One set of methods 
uses statistical, descriptive, and predictive models to provide hindsight, insight, and foresight, 
respectively. For example, predictive models may one day be used to forecast traffic conditions based 
on weather, incidents, historical traffic data, and other factors. Additionally, new techniques are rapidly 
emerging to analyze data previously considered too difficult, including unstructured data like text, 
audio, and video. Improvements in video analytics technologies may make streaming video from 
closed-circuit television (CCTV) much more valuable than it is today. With properly designed 
acquisition, marshalling, and analysis methods, tools such as live, interactive “dashboards” can be 
designed to minimize the time from data ingestion to actionable insights. This is the kind of thing 
that Performance Measurement System (PeMS) and Transportation Information System (RITIS) are 
doing for TSM&O agencies today with traditional databases and acquisition methods. 

Action 
Action refers to the use of insights gained during the analysis stage to change business outcomes. 
For example, making real-time decisions based on traffic conditions and crash reports to generate 
alerts and notifications informing in-vehicle devices or nomadic devices of potential traffic delays. 
Insights may yield different actions depending on the priorities of decisionmakers from operations 
engineers, planners, first responders, departmental leadership, and regional coordinators. The effect 
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of actions based on insight is the potential value (the fifth V of big data) that TSM&O organizations can 
achieve through big data. Because action is typically a result of the analyses being performed and 
dependent on the business outcome desired, it is the last consideration of a big data solution, 
sequentially. In other words, a complete solution requires additional consideration specific to the 
business problem to be solved, but it is not considered in detail in this report. 

Big Data Trends 
Given big data’s recent introduction as a serious technology disrupter, it is important to understand the 
current trends of the market overall, as well as the trends across industries and government agencies. 
The information contained in this report is a high-level “snapshot” of the current big data landscape as 
of spring 2016. Many big data tools are quickly gaining traction, and new technologies are 
constantly emerging and maturing. (Olavsrud, Thor, “21 data and analytics trends that will 
dominate 2016,” Accessed April 5, 2016, http://www.cio.com/article/3023838/analytics/21-data-and-
analytics-trends-that-will-dominate-2016.html.) Technology is always expanding and pushing the limits 
of the next great innovation, and, with that perspective in mind, this report is intended to provide an 
introduction to the technologies, tools, and practices anticipated to be at the forefront of the big data 
movement in the next 5 to 10 years. 

Increased Adoption 
The biggest trend in the realm of big data is increased adoption. Gartner’s “Hype Cycle for Emerging 
Technologies” very noticeably left Big Data out of its 2015 edition. While it had been a staple of 
the famous Hype Cycle in past years and was trending down the Slope of Disillusionment as expected 
in 2014, the Gartner author commented on its absence saying “We’ve retired the big data hype cycle. 
I know some clients may be really surprised by that because the big data hype cycle was a really 
important one for many years. But what’s happening is that big data has quickly moved over the Peak 
of Inflated Expectations and has become prevalent in our lives.” (Woodie, Alex, “Why Gartner 
Dropped Big Data Off the Hype Curve,” Accessed April 6, 2016, 
https://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/.) Essentially, 
the big data movement has become commonly accepted and, in some cases, specific analysis and 
action concepts have been introduced in its stead (e.g., Machine Learning and Natural Language 
Processing). The Gartner Hype Cycle will be discussed in more detail in subsequent sections. Several 
key areas of increased adoption of big data tools, technologies, and related concepts are described 
below. 

Big Data in Strategic and Tactical Operations 

Up to this point, big data has been focused on accomplishing very specific, operational business 
objectives (e.g., Google Maps and other Navigation systems use traffic data to provide basic route 
guidance to individual drivers). However, the new wealth of available data is opening opportunities in 
high-level strategy work as well. According to a report, “Big Data—Moving from the operational to the 
strategic,” released by Wipro, one of the next big stepping stones for big data will be in strategic 
and tactical business endeavors. (Sanjiv, K.R., “Big Data—Moving from the operational to the 
strategic,” Accessed April 6, 2016, http://www.wipro.com/documents/Wipro-analytics-big-data-moving-
from-the-operational-to-the-strategic.pdf.) Data from connected vehicles could provide insight into 
crash hotspot locations leading to a reduction in incidents at these locations. Likewise, connected 
traveler data could tell us how readily individuals in a particular corridor will change their travel 

http://www.cio.com/article/3023838/analytics/21-data-and-analytics-trends-that-will-dominate-2016.html
http://www.cio.com/article/3023838/analytics/21-data-and-analytics-trends-that-will-dominate-2016.html
https://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf
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patterns in response to congestion, incidents, weather and other factors, leading to better traveler 
information and more targeted Integrated Corridor Management (ICM) strategies. 

Open Source Software in the Government 

Agencies across the Federal Government are recognizing the importance of open source software 
(OSS) as is evident by several reports released by government agencies. One report released in 2013 
by the Department of Homeland Security (DHS) titled, Open Source Software in Government:  
Challenges and Opportunities, describes the current use of OSS, the barriers they see to its 
mainstream adoption, and the next steps that need to be taken. (U.S. Department of Homeland 
Security, “Open Source Software in Government:  Challenges and Opportunities,” Accessed April 6, 
2016, 
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Governm
ent%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf.) Another report released 
by the White House Office of Management and Budget (OMB) in 2014, titled The Open Government 
Partnership details the Government’s belief in the value of and their commitment to OSS both across 
government agencies and with the general public. (The Open Government Partnership, “Announcing 
New Open Government Initiatives,” Accessed June 27, 2016, 
https://www.whitehouse.gov/sites/default/files/microsites/ostp/new_nap_commitments_report_092314.pdf.) 

The price tag (i.e., “free”) is tempting for any organization, but perceived risks to security, lack of a 
controlled release roadmap and potential lack of commercial support has many holding back and 
continuing to pursue more traditional solutions. In response to this, companies that sell support for 
OSS and/or additional proprietary software (e.g., Red Hat Enterprise Linux) have made OSS a viable 
option for customers who require stability and support. For example, the United States Census 
Bureau released a request for quotation (RFQ) to explore open source Hadoop technology through 
vendors that support the OSS tools. Cloudera, Hortonworks, and MapR are three examples of 
companies that sell support for their own distributions of Hadoop (each of these will be discussed in 
subsequent sections of this report). As vendors like these work to provide comprehensive services for 
open-source big data technologies, the draw of these solutions becomes the commodity hardware 
they are built on providing high scalability with significantly reduced cost; just the “do more with less” 
that government agencies require.  

Open Data in the Government 

An executive order was issued in 2013 demonstrating the Government’s position on the Open Data 
Policy advocating greater transparency of data and interoperability between government agencies 
through the use of open and shared machine-readable data. (The White House, Office of the Press 
Secretary, “Executive Order—Making Open and Machine Readable the New Default for Government 
Information,” Accessed June 27, 2016, https://www.whitehouse.gov/the-press-

https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/new_nap_commitments_report_092314.pdf
https://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
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office/2013/05/09/executive-order-
making-open-and-machine-
readable-new-default-government-.) 
Consistent with this mission, United 
States Department of 
Transportation (U.S. DOT) has 
recognized the importance of open 
data with the creation of the Open 
Source Application Development 
Portal (OSADP), Research Data 
Exchange (RDE), and Operational 
Data Environment (ODE) for the 
purposes of “promot[ing] open 
source development of software 
applications that use connected 
vehicle technology and data to help 
travelers avoid delays.” (U.S. 
Department of Transportation, Federal Highway Administration, “Open Source Application 
Development Portal,” Accessed June 27, 2016, http://www.itsforge.net.; U.S. Department of 
Transportation, Office of the CIO, “Privacy Impact Assessment—Federal Highway Administration 
(FHWA) Open Source Application Development Portal,” Accessed June 27, 2016, 
https://cms.dot.gov/sites/dot.gov/files/docs/OSADP__FHWA_PIA_Adjudicated_082514.pdf.) 

Machine Learning and Cognitive Analytics in Industry 

Machine learning is the technology behind designing machines capable of pattern recognition to 
“learn” without being explicitly programmed to do so. Cognitive computing uses machine learning, 
natural language processing, and other technologies to simulate the abilities of the human brain. 
Cognitive analytics is the combination of cognitive computing and analytic techniques to make 
sense of data in a smarter and more efficient way. (Deloitte, “Cognitive analytics:  The three-minute 
guide,” Accessed April 6, 2016, 
http://public.deloitte.com/media/analytics/pdfs/us_da_3min_guide_cognitive_analytics.pdf.) Each of 
these techniques becomes more accurate and more useful as they process more data making them 
an attractive tool to be adopted into a big data solution. These tools may become critical to fully utilize 
the potential of big data over the next 10 years. 

For example, a report by Forbes describes how cognitive analytics has the potential to offer 
unimaginable insight into the world of financial fraud prevention and protection, where small 
improvements in performance can turn into hundreds of millions in savings. With the ability to 
continuously learn from the data being analyzed, financial analytical systems will be capable of 
uncovering insights previously unseen, automatically recognizing and managing user patterns, and 
aiding in evidence-based decisionmaking. (Drury, Nicholas and Sarkar, Sandipan, “How Cognitive 
Computing Impacts Banks and Financial Markets,” Accessed April 6, 2016, 
http://www.forbes.com/sites/ibm/2015/11/09/how-cognitive-computing-impacts-banks-and-financial-
markets/#31e622e525e5.) Many of the same principles may be able to be applied to understanding 
traffic patterns more thoroughly based on weather conditions, traffic congestion, visibility, and other 
factors to make accurate short-term predictions and provide appropriate preventative measures if 
enough data can be quickly and reliably assimilated into a prediction model. 

Big Data at the Census Bureau 
The U.S. Census Bureau (USCB) is designing and 
implementing a big data analytics platform as part of an 
initiative to implement “Adaptive Survey Design” across the 
entire organization. Adaptive design is an innovative 
approach to collect survey and census data in more efficient 
ways to dynamically assign data collection methods, save 
the USCB both time and money, and increase the quality of 
the data collected. 

USCB is positioning their solution architecture at the leading 
edge of big data solutions poised to adapt more quickly to 
future technologies and trends. 

http://dc-aapor.org/SystemsInfrastructureMathurThieme.pdf. 
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Security and Governance in Big Data 

Security and data governance are topics frequently heard in the debate surrounding big data and 
other naturally related topics (e.g., cloud and OSS), and this conversation is not any less important for 
TSM&O agencies. A trend we see as particularly important for agencies in big data governance 
is the added consideration of shared data, whether that’s shared across a single agency, shared 
between local agencies, or shared across entirely disparate groups (e.g., local TSM&O agencies, auto 
manufacturers, private ride sharing companies like Uber and Lyft, etc.). Shared data requires all data 
consumers (both individual users and organizations as a whole) to consider the appropriate 
governance controls and regulations required across the data lifecycle. 

The inherently shared data of connected travelers, vehicles, and infrastructure will likely be capable of 
painting a rather clear picture of U.S. citizens as they move about their daily lives, and could be used 
for dishonest purposes if not properly protected and regulated. A Corporate Partnership Board report 
from the International Transport Forum titled, “Big Data and Transport:  Understanding and assessing 
options” explores the work still to come in understanding the privacy implications of big data in 
transportation. The report comments that a “New Deal on Data” may be necessary in the near future 
to redefine and regulate data ownership between data producers, consumers, and subjects. 
(International Transport Forum Corporate Partnership Board, “Big Data and Transport:  Understanding 
and assessing options,” Accessed April 6, 2016, http://www.itf-
oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf.) Many State DOTs already have formed data 
governance committees and initiatives specific to their organizational structures (including 
Strategic Highway Safety Plan (SHSP), Highway Safety Improvement Program (HSIP), Traffic 
Records Coordinating Committees (TRCC), etc.); however, these committees will need to consider 
new and unique challenges posed by the emerging data sources discussed in previous sections as 
well as how they wish to be interacting with other transportation organizations in the coming years. 
(Transportation Research Circular, “Improving Safety Programs Through Data Governance and Data 
Business Planning,” Accessed June 27, 2016, 
http://onlinepubs.trb.org/onlinepubs/circulars/ec196.pdf.) The Federal Highway Administration (FHWA) 
currently is in the process of creating a Data Governance Plan to advise agencies on topics such as 
these. As of spring 2016, the first of six volumes has been published for dissemination across DOTs, 
and the full plan is estimated to take several years to complete and publish. (Federal Highway 
Administration, “Data Governance Plan Volume 1:  Data Governance Primer,” Accessed May 14, 
2016, https://www.fhwa.dot.gov/datagov/.) The security concerns and proper use of these emerging 
data sources should be considered during the creation of this report and, consequently, TSM&O 
agencies should consider these reports and others like them when acquiring, marshalling, and acting 
on emerging data. 

Emerging Technologies and Concepts 
As discussed previously, big data is officially considered on the Plateau of Productivity according 
to the Gartner Hype Cycle and into recognized and established territory. However, there are a number 
of specific technologies that are still a part of the Hype Cycle and may have some distance to travel 
before they can be considered firmly established technologies. A few key emerging technologies and 
concepts are discussed below. 

http://www.itf-oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf
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Hadoop as a Leader 

Hadoop is likely the most established technology on this list, but it also is a rapidly changing 
ecosystem that many of its subcomponents can still be considered emerging technologies. Hadoop is 
an enterprise big data storage and computational platform, the core components of which include 
HDFS (distributed file system), MapReduce (computing framework), and Yet Another Resource 
Negotiator (YARN) (resource management tool). Hadoop is an open source initiative founded by the 
nonprofit Apache that has been divided into subprojects to be worked on by volunteers from Apache, 
other vendors, and the open-source community at large. These subprojects make up the total 
ecosystem of wide-ranging capabilities that Hadoop offers and enable the fast-paced adaptability that 
Hadoop is known for. Just a few of the more commonly known subprojects include a relational 
database (Hive), a nonrelational database (HBase), a distributed coordination service (Zookeeper), 
and an in-memory, distributed computational engine (Spark). 

Due in large part to its open-sourced nature, Hadoop has quickly become the foremost big data 
solution available in the market today. New components can be added as needed by opening a new 
subproject and contributing directly. While Apache provides all OSS completely free of charge, several 
vendors have chosen to package their own distributions of Hadoop and sell their support services as 
well as their own proprietary additions. More detail will be provided on the most popular Hadoop 
vendors and the services they offer as well as how they compare to other big data solutions in 
subsequent sections; however, it is worth understanding from the outset the wide reach Hadoop has 
in the big data field. Quite a few variations and support packages are available through vendors, but 
the adaptability and speed with which new technology and tools can be developed make Hadoop a 
significant leader in big data technologies at this time. 

Geographic Information Systems Tools for Hadoop 

A technology that already is pervasive in TSM&O is Geographic Information Systems (GIS). GIS is 
designed to store, manage, analyze, and visualize geographic and spatial data. There are several GIS 
tools available for Hadoop on the market currently, however, some are more mature than others. ESRI 
(an international GIS software company) has developed several open source advanced GIS tools for 
Hadoop. Additionally, there are GIS tools emerging that run on the Spark in-memory engine, including 
Magellan and SpatialSpark providing a new class of high performance geospatial computing for big 
data. (GetInData, “Geospatial analytics on Hadoop,” Accessed April 7, 2016, 
http://getindata.com/blog/post/geospatial-analytics-on-hadoop/.) Since transportation data is integrally 
based on location, consideration of GIS tools and technologies will be an important element in 
subsequent reports. 

Big Data on the Cloud 

Many organizations have given their predictions for 
big data in the coming years and mention an 
inevitable move to the cloud. (Olavsrud, Thor, “21 
data and analytics trends that will dominate 2016,” 
Accessed April 5, 2016, 
http://www.cio.com/article/3023838/analytics/21-
data-and-analytics-trends-that-will-dominate-2016.html.; IDC, “IDC Reveals Worldwide Big Data and 
Analytics Predictions for 2015,” Accessed April 7, 2016, http://www.idc.com/getdoc.jsp; Rossi, Ben, 
“Top 8 trends for big data in 2016,” Accessed April 7, 2016, http://www.information-

Since transportation data is integrally 
based on location, consideration of GIS 
tools in Big Data systems and 
technologies will be an important element. 

http://getindata.com/blog/%E2%80%8Cpost/geospatial-analytics-on-hadoop/
http://www.cio.com/%E2%80%8Carticle/%E2%80%8C3023838/%E2%80%8Canalytics/%E2%80%8C21-data-and-analytics-trends-that-will-dominate-2016.html
http://www.cio.com/%E2%80%8Carticle/%E2%80%8C3023838/%E2%80%8Canalytics/%E2%80%8C21-data-and-analytics-trends-that-will-dominate-2016.html
http://www.idc.com/home.jsp
http://www.information-age.com/%E2%80%8Ctechnology/%E2%80%8Cinformation-management/%E2%80%8C123460615/%E2%80%8Ctop-8-trends-big-data-2016
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age.com/technology/information-management/123460615/top-8-trends-big-data-2016.) The inherent 
scalability and flexibility required to support a big data solution make cloud an attractive option from 
the start. Cloud technology is no longer considered an emerging trend; however, big data solutions on 
the cloud using open source cloud technologies and tools is a recent evolution. 

There are primarily two cloud options to be considered for a big data solution:  platform-as-a-service 
(PaaS) and infrastructure-as-a-service (IaaS). IaaS solutions set up and manage the foundation of 
a system (network, storage, servers, and virtualization); PaaS solutions set up and manage the 
foundation as well as the operating system, middleware, and runtimes required. OpenStack and 
Docker are IaaS and PaaS OSS cloud options, respectively. OpenStack and Docker both offer free, 
interoperable, and adaptable options for organizations to move into the cloud, and both solutions are 
gaining popularity exponentially with OpenStack being referred to as “the next Linux”. (IT Business 
Edge, “Ten Reasons Why OpenStack Will Rule the Enterprise,” Accessed April 7, 2016, 
http://www.itbusinessedge.com/slideshows/ten-reasons-why-openstack-will-rule-the-enterprise.html.) 
Additionally, many traditional cloud providers (e.g., Amazon Web Services (AWS), IBM, Microsoft, etc.) 
offer their own Hadoop PaaS solutions. A detailed discussion of the relative costs and capabilities of 
those platforms will be elaborated more in subsequent sections. 

Government organizations, including many TSM&O agencies also are starting to join the cloud 
conversation. While government organizations tend to be risk-adverse in nature and maintain tight 
control of their IT assets, they have recognized the potential benefits of deploying in the cloud, 
including instant and cost efficient scaling. Several early adopters already have made the leap, 
including the General Services Administration (GSA), Department of the Interior, Department of 
Agriculture, National Aeronautics and Space Administration (NASA), and the National Oceanic and 
Atmospheric Administration. (InformationWeek, “5 Early Cloud Adopters in Federal Government,” 
Accessed April 7, 2016, http://www.informationweek.com/government/cloud-computing/5-early-cloud-
adopters-in-Federal-government/d/d-id/1315911.) One of the biggest obstacles lies in a lack of 
certification by the Federal Risk and Authorization Management Program (FedRAMP) of most 
major cloud providers. This continues to create lingering doubts as to the security and privacy that 
cloud currently can offer. However, as one of the early adopters of the cloud, GSA has been a big 
push in the Federal Government’s “Cloud First” initiative that requires “agencies take full advantage of 
cloud computing benefits to maximize capacity utilization, improve IT flexibility and responsiveness, 
and minimize cost.” (General Services Administration, “Cloud IT Services,” Accessed April 7, 2016, 
http://www.gsa.gov/portal/content/190333.)  

Internet of Things (IoT) 

With data streaming in from every direction (from connected travelers, vehicles, and infrastructure, for 
example), IoT platforms are being developed to connect to these devices and ingest the data with 
use-cases that cut across a variety of industries and markets in very similar ways. 

In 2015 a number of predictions were made for the Internet of Things in a report produced by the 
International Data Corporation (IDC), an organization that provides insight and strategy on emerging 
market opportunities. In this report, IDC predicts that: 

• “Within 5 years, all industries will have rolled out IoT initiatives with more than
90 percent of all IoT data hosted on PaaS.”

• This prediction gives insight into the significance that businesses are placing in the future
of IoT, the versatility that it must have to cross into every industry, and the fact that

http://www.information-age.com/%E2%80%8Ctechnology/%E2%80%8Cinformation-management/%E2%80%8C123460615/%E2%80%8Ctop-8-trends-big-data-2016
http://www.itbusinessedge.com/slideshows/ten-reasons-why-openstack-will-rule-the-enterprise.html
http://www.informationweek.com/government/cloud-computing/5-early-cloud-adopters-in-federal-government/d/d-id/1315911
http://www.informationweek.com/government/cloud-computing/5-early-cloud-adopters-in-federal-government/d/d-id/1315911
http://www.gsa.gov/portal/content/190333
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agencies such as TSM&O organizations will only manage the applications and the 
information, with the hardware, software, and data hosted on a Platform. 

• “By 2017, 90 percent of enterprise system practices will adopt new business models to
manage the service-oriented, nontraditional infrastructure.”

• This prediction is a technical way of saying that IoT is coming, but businesses don’t
necessarily know how to use it yet and their business currently can’t handle it. This is
particularly true for most DOTs that are primarily reliant on “on premise” operations today.
With the speed at which DOTs can react to market changes, the 2017 prediction is likely
premature for TSM&O practices.

• “By 2018, 40 percent of IoT-created data will be stored, processed, and analyzed at the
edge of the network.”

• The “edge of the network” refers to the devices collecting and distributing the data in an
IoT system. These are sometimes referred to as “edge devices” and include routers,
switches, and processors closest to where the data is delivered to the organization. This
prediction indicates that instead of bringing all data into a central location, there will be a
trend to manage data closer to the devices that provide it, reducing data movement and
eliminating massive accumulation of data. This is particularly true for the emerging
sources evaluated in this report; the collection, processing, and transmittal of raw BSMs
all the way back to the Traffic Management Center (TMC) will be intractable. Strategies
for handling these issues will be explored in a subsequent report.

• “The movement of large quantities of data produced will cause roughly 50 percent of
IT networks to be constrained and 10 percent overwhelmed by IoT devices.”

• This prediction assumes that (based on the second prediction in which IoT is expected to
significantly affect the normal operating procedure of businesses) IoT will overwhelm the
businesses that don’t react or don’t react quickly enough. This will likely be the case for
TSM&O organizations given the analysis in this report in chapter 3.

It is clear from the analysis in chapters 3 and 4 that TSM&O organizations will need to address how 
IoT tools and technologies intersect with big data tools and technologies in some form or fashion as 
more and more data becomes available from more and more devices. While the general concepts of 
IoT have been part of TSM&O for more than 40 years, the scale of connected infrastructure (100s-
1000s) is pale in comparison to the data from the millions of travelers and millions of vehicles that will 
be available to the DOT in the next 10 years. The growth of generalized technologies in IoT for a 
variety of other industries will likely lead to new innovations that apply to TSM&O just as easily as 
other application sectors. 
Every year, Gartner releases an updated version 
of the Hype Cycle for Emerging Technologies. 
The report shows at-a-glance the current state 
and projected progress of many of the most 
popular emerging technologies in the market 
today. Each Hype Cycle drills down into five key 
phases of a technology’s complete lifecycle. 
According to Gartner, those phases are: 

While the general concepts of IoT have been 
part of TSM&O for more than 40 years, the 
scale of connected infrastructure (100s-
1000s) is pale in comparison to the data from 
the millions of travelers and millions of 
vehicles that will be available to the DOT in 
the next 10 years. 
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• Innovation Trigger:  A potential technology breakthrough kicks things off.

• Peak of Inflated Expectations:  Early publicity produces a number of success stories—often
accompanied by scores of failures.

• Trough of Disillusionment:  Interest wanes as experiments and implementations fail to
deliver. Producers of the technology shake out or fail.

• Slope of Enlightenment:  More instances of how the technology can benefit the enterprise
start to crystallize and become more widely understood.

• Plateau of Productivity:  Mainstream adoption starts to take off.

Based on a user’s appetite for risk, they can use this report to assess their willingness to invest in a 
given technology. 

In July of 2015, Gartner released its newest version of the Emerging Technology Hype Cycle. The 
report estimates that IoT has just crossed the “Peak of Inflated Expectations” and is beginning its trend 
down the “Trough of Disillusionment,” where implementations fail and curiosity fades. The phase is 
predicted to last 5 to 10 years before mainstream adoption will takeover in the “Plateau of Productivity” 
phase. The IoT platform also appears on the Hype Cycle just before the “Peak of Inflated 
Expectations.”.” Further in this report, we summarize some available platforms, but at this stage in 
their development very little details are known about their effectiveness or real-world utility, as astutely 
noted by Gartner. 

Figure 13. Graph. Gartner’s Hype Cycle for emerging technologies. 
(Source:  Gartner, 2015.) 
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While these terms might have jarringly negative language, movement through the Hype Cycle is an 
important path every new technology travels to eventually reach the “Plateau of Productivity.” As 
discussed previously in this report, big data was previously on the Hype Cycle, but was left off the 
most recent edition due in part to its increasing legitimacy and in part to its broad scope. 

The IoT reference model provides a standardized and simplified model of IoT systems and 
applications. The reference model is comprised of seven levels; however, it is important to note that 
data may flow in both directions. The following reference model shows how big data fits within IoT: 

Figure 14. Illustration. Internet of things reference architecture. 
(Source:  Cisco, 2013.) 

Physical devices and controllers are considered the “things” in the Internet of things. They include a 
wide range of endpoint devices that send and receive data. In the context of this report, connected 
travelers, vehicles, and infrastructure are the “Things.” 

Connectivity represents the communication and processing by the existing networks. The most 
important function of this level is reliable, timely information transmission. In the context of this report, 
this is described by the Point of Access for each data source in the first section. 

In edge computing, network data flows are converted into information that is suitable for Level 4. On 
this level, data is evaluated, formatted, and assessed on a packet-by-packet basis before sending the 
data to storage. This is a critical issue for TSM&O organizations. Design and evaluation of 

http://insightaas.com/new-iot-reference-model-creates-common-tongue/
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computing architectures for edge processing of the Emerging Data Sources (particularly public 
connected vehicles) will be the subject of a subsequent report. 
 
During data accumulation, data in motion is converted to data at rest. As the data is put to rest, it 
becomes usable by applications on a nonreal-time basis. Applications can access the data when 
necessary. Data Accumulation is a critical issue for TSM&O organizations.  
 
Data abstraction focuses on rendering data and its storage to provide faster querying capabilities by 
applications. The Data Abstraction process includes reconciling data formats, assuring data 
consistency, and consolidating data into one place. Data abstraction is a critical issue for TSM&O 
organizations.  
 
The application level is where information interpretation occurs. Software interacts with the data 
abstraction level to view the data stored. At this level, business intelligence reports are utilized to 
understand the data for operational decisions. How big data tools and applications integrate with 
legacy TSM&O applications and systems is a critical issue for TSM&O organizations.  
 
Collaboration and processes is the human interaction and business process layer. This level 
empowers people to do their work better by providing the right data from the application level, at the 
right time, to make meaningful decisions. 
 
The general structure of IoT describes the component layers of the information processing system 
that will be needed as connected vehicles and travelers join the existing connected infrastructure of 
the TSM&O agency in becoming a reality over the next 5 to 10 years. Because these commercial and 
open source platforms are right at the top of the Gartner Hype Cycle, precious little is known about the 
details. Certainly since the data sources from connected travelers and vehicles are still emerging, it is 
not expected that an IoT platform would be able to acquire, marshal, and analyze the data without 
significant investment in time and funding by a particular agency, a consortium, FHWA/U.S. DOT, or 
even third-party providers intending to sell TSM&O agency these capabilities as a Service. 
Subsequent reports will explore the requirements of TSM&O applications that may serve to drive 
features and functionality of IoT offerings so that, in 5 to 10 years’ time, they can closer to “plug and 
play” for TSM&O-related applications. 
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Figure 15. Illustration. Potential impact of Internet of Things in the freight shipping industry. 
(Source:  Datastax Infographic https://jaxenter.com/Internet-things-data-go-112274.html, 2014.) 

Acquisition Trends 
In the immediately preceding sections, several overall trends seen in the big data arena across 
industries and government agencies are discussed. In the next few sections, some trends specific to 
each step of the big data process model will be discussed (except Action). Many of the trends 
discussed may seem easily generalizable and relevant to any system implementation. However, each 
is made more complicated by the five V’s of big data discussed earlier. In the case of data acquisition, 
several trends worth watching include organizations’ desires to collect the “right” data and save time, 
money, and resources on unnecessary data; to collect more data in real-time to make faster 
decisions; and to connect to legacy databases and leverage their investments in their current IT 
infrastructure. These issues are all relevant to TSM&O and will be discussed in more detail in 
subsequent reports. 

Collecting the Right Data 

One of the most daunting tasks in implementing a big data solution is sifting through the new wealth of 
available data for the data that really matters. Big data solutions are designed around inexpensive and 
scalable storage resources; however, as cheap as storage can be, it still has a cost and should be 
managed as an asset. In this case, the less extraneous, unused data stored, the better ROI an 
organization will realize on its big data solution. This is a problem TSM&O agencies likely already 

https://jaxenter.com/Internet-things-data-go-112274.html
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face, but will be magnified to an incredible scale if the currently available (but uncollected) data and 
the emerging data sources discussed previously become part of agencies’ regular intake. 
Wipro’s report regarding big data’s move into strategic initiatives showed that organizations 
overwhelmingly fear data “quality issues” and “difficulty in assessing which data is truly useful (data 
overload).” (Sanjiv, K.R., “Big Data—Moving from the operational to the strategic,” Accessed April 6, 
2016, http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-
strategic.pdf.) This will be critically true for the collection of detailed connected vehicles data identified 
earlier. TSM&O organizations new to big data will need to develop methods of choosing what data to 
collect, sifting through the available data to understand what should be kept, and storing and archiving 
based on frequent and infrequent use, respectively. All TSM&O organizations, for example, struggle 
with maintenance of fixed assets (in pavement loop detectors, radar, and video cameras) for traffic 
detection. The emerging data sources of connected travelers and vehicles may be able to replace 
these assets and reduce the expense of maintaining and replacing the equipment. The desire to 
ingest, store, and analyze every piece of data that could provide business insights is dependent on 
avoiding irrelevant data that wastes resources. 

Collecting Real-Time Data 

While collecting data in real-time may seem to be in direct opposition with the previous trend and 
almost guarantee data overload, streaming data in real-time or near real-time is essential to enable 
the agility organizations will need to make informed and evidence-based decisions just as quickly as 
the data comes in. The speed with which agencies are capable of ingesting and processing the data 
will directly affect the speed with which they can ultimately use the data (i.e., perform analyses and 
execute actions based on those analyses). Once again, this may be a problem agencies currently 
deal with, but the magnitude and frequency with which we expect streaming data to increase is likely 
to be staggering. Many tools and technologies enabling streaming data acquisition speeds will be 
discussed in detail in subsequent sections. 

Coexistence of Big Data Tools and Legacy Databases 

Every big data solution should consider and 
incorporate in its design an organization’s legacy 
IT infrastructure. This may include both 
integrating systems still relevant to business 
processes and retiring outdated or newly 
redundant systems. An excellent example of 
systems likely to remain relevant are the many 
sources of data that organizations are built 
around. A complete big data solution will still require integration with these data sources. Deciding to 
implement a big data solution is an important business decision for any organization, and examination 
of legacy investments is an incredibly important first step in that decision that requires careful 
consideration, technical, financial, and otherwise. For example, if an agency currently uses Oracle for 
their Freeway Management System and MSSQL for their real-time Arterial Management System, 
these legacy databases will need to be integrated with or entirely consumed by the Linux-based 
Hadoop. This would have to be a business decision based on the technical skills requirements, 
potential ROI, total investment already made in Oracle and MSSQL, and other factors. 

If an agency currently uses Oracle for their 
Freeway Management System and MSSQL 
for their real-time Arterial Management 
System, these legacy databases will need to 
be integrated with or entirely consumed by 
the Linux-based Hadoop. 

http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf
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Marshalling Trends 
The most recognizable aspect of the big data solution is data marshalling. A marshalling solution must 
be capable of storing the total volume and variety of data an organization collects at the velocity needed 
for timely action. Additionally, many marshalling solutions require replication factors to ensure fault 
tolerance of the data being stored and the processes being executed, and would require at a bare 
minimum the storage resources for the total replicated data volume. Software-defined storage and the 
use of commodity hardware and virtualization are just a few of the popular trends in data marshalling. 

Software-Defined Storage 

Software-defined storage (SDS) is the decoupling of the physical hardware and the specific software 
that defines how the physical hardware works. There is often confusion in the distinctions between 
SDS, storage virtualization, and traditional storage, and there is little standardization of terms and 
definitions at this stage. In a traditional system, hardware is controlled by a layer of built-in software. 
This can limit flexible configuration capabilities and introduce significant vendor lock-in based on the 
requirements an organization has. Storage virtualization is when several storage resources (e.g., 
multiple physical servers) are virtually combined as one complete set and then logically partitioned 
into separate resources, similar to a redundant array of independent disks (RAID). This option can 
lighten some of the restrictions introduced by traditional storage alternatives. SDS, however, sets up a 
brand new software layer responsible for data replication, snapshots, and other hardware 
management capabilities that would typically be the responsibility of the hardware if it had those 
capabilities at all. SDS can be implemented on commodity hardware or hardware that already exists 
to offer a more interoperable solution for organizations concerned with vendor lock-in or 
limitations due to their hardware specifications. SDS can eliminate many of these concerns and 
provide a more cost efficient, flexible solution with automated management capabilities. (Rouse, 
Margaret, “software-defined storage,” Accessed April 7, 2016, 
http://searchsdn.techtarget.com/definition/software-defined-storage.) 

However, as with any new technology trend, SDS solutions require careful consideration of the 
business needs and IT capabilities. Several concerns a former Dell engineer shared include the 
vagueness in SDS definitions, a lack of understanding of performance needs, and the risky desire to 
manage every aspect of the organization. SDS is still a growing concept, and the definition and 
understanding of the technologies available today are unclear at best. Organizations should be careful 
to understand what their storage performance needs are, what SDS services are available, and what 
SDS services can actually provide. Additionally, organizations should be careful to understand the 
complexity required to manage an SDS solution and the potential risk they are taking on if the solution 
fails. (Vekiarides, Laz, “5 bitter truths about software-defined storage,” Accessed April 7, 2016, 
http://www.infoworld.com/article/2997239/storage/5-bitter-truths-about-software-defined-storage.html.) 

Commodity Hardware 

One of the most frequently mentioned traits of big data marshalling is the use of commodity 
hardware as a means of reducing storage costs. The use of commodity hardware applies to 
Hadoop and SDS solutions, but may not apply to a massively parallel processing (MPP) database 
which may use high performance hardware. MPPs and Hadoop platforms are both discussed in more 
detail in further sections. Hadoop and many other technologies have embraced the fact that servers 
will eventually fail. Based on this fundamental principle, many big data technologies are limiting the 
dependency on hardware investment and designing solutions that are extremely fault tolerant, robust, 
and highly available systems largely unaffected by server failures. 

http://searchsdn.techtarget.com/definition/software-defined-storage
http://www.infoworld.com/article/2997239/storage/5-bitter-truths-about-software-defined-storage.html
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For example, Hadoop builds in a default data replication factor of three that breaks data into 
chunks, copies those chunks twice, and then stores them in distributed locations across storage 
nodes, (a “node” is a storage server computer). This method of data storage ensures the fault 
tolerance of the data; in the case that one node fails, a master node makes a copy of all the data 
stored on the lost node and redistributes the new copies around the cluster again to maintain the 
replication factor of three. 
 
This has serious implications for storage capacity planning; TSM&O organizations will need to perform 
extensive sizing and planning exercises to understand the total storage anticipated and then consider 
the replication factor they require for fault tolerance. Using commodity hardware ensures that an 
organization loses as little as possible when a server inevitably fails because organizations can 
choose to either repair the failed server (without having the rest of the platform dependent on server 
recovery) or simply remove and replace with another for minimal loss. Deploying a solution in the 
cloud produces many of the same benefits by removing all concerns of physical servers; however, it 
has its own set of challenges as mentioned earlier and expanded in future sections. 

Virtualization 

Virtualization is another option to decrease 
hardware costs, increase customization and 
interoperability, and increase system availability. 
Virtualization is the act of creating a virtual 
version of the network, operating system, 
application, and/or other levels of a system. 
There are many gradations of virtualization; 
hardware virtualization being one of the most common. Hardware virtualization is the creation of one 
or several virtual machines (VM) within the physical hardware that behave as a completely 
independent computing platform. VMs have their own operating system, middleware, and 
applications, independent from that of the physical hardware where the VM lives. Many TSM&O 
organizations already are embracing the concepts of virtualization for traditional applications and 
databases. The use of VMs has been shown to reduce the energy footprint of data centers, decrease 
investments in hardware, increase availability, reduce vendor lock-in, and reduce the time to provision, 
transfer, and manage servers. Proper configuration of VMs is critical to maintaining application 
performance requirements and, in particular, the read/write performance of database access and 
retrieval (both legacy and big data). 

TSM&O organizations will need to perform 
extensive sizing and planning exercises to 
understand the total storage anticipated and 
then consider the replication factor they 
require for fault tolerance. 

Data Analysis Trends 
Once data is acquired, prepared, and stored, it needs to be used. Data analysis is the final, crucial 
step in the data process model before achieving the end goal of actionable insights. The benefit of 
developing many ways to acquire and store high volumes and diverse varieties of data is to derive 
business value, and data analysis trends are becoming more sophisticated and robust as the ability to 
collect, store, and process rich and diverse data improves. The list below describes some of the 
biggest trends in data analysis. This topic is discussed in more detail specifically for TSM&O practices 
in a subsequent report. 
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Increased Investment in Skills 

“Data scientists are the people who understand how to fish out answers to important business 
questions from today’s tidal wave of structured and unstructured information. A good data scientist has 
to be able to speak the language of business as well—which is what separates data scientists from 
great analysts or data management experts. Data scientists want to build things—not just give 
advice.” (Deloitte, “Data scientists:  The three-minute guide,” Accessed April 6, 2016, 
http://public.deloitte.com/media/analytics/pdfs/us_ba_Deloitte3minDatascientist_021813.pdf.) You 
may have to spend a lot to retain a data scientist suited to your organization. But when you consider 
that person’s ability to influence smarter, more focused investments in other areas such as technology, 
it’s a premium worth paying.” (Deloitte, “Cognitive analytics:  The three-minute guide,” Accessed April 
6, 2016, http://public.deloitte.com/media/analytics/pdfs/us_da_3min_guide_cognitive_analytics.pdf.) 
 
As more organizations shift to a data-driven mindset, the demand for data scientists is outpacing 
supply. The result is a highly competitive landscape for attracting and keeping top talent. This 
demand makes data science an attractive field of study in academia, particularly at the Master’s level 
(where students are more likely to go into industry jobs rather than stay in academia). The first such 
program was started at North Carolina State University (NCSU) in 2007. Since then similar programs 
have been developing exponentially. NCSU’s Institute of Advanced Analytics performs a survey of 
data science Master’s programs each year and categorizes them into four types:  Master of Science 
(MS) in Analytics (MSA), MS in Data Science (MSDS), MS in Business Analytics (MSBA), and other 
MS programs, tracks and concentrations. The following figure demonstrates the exponential growth of 
these programs at NCSU alone. (North Carolina State University Institute for Advanced Analytics, 
“Degree Programs in Analytics and Data Science,” Accessed May 14, 2016, 
http://analytics.ncsu.edu/?page_id=4184.) 
 

 
 

Figure 16. Graph. Growth of Master’s degree programs in Analytics and Data Science. 
(Source:  North Carolina State University Institute for Advanced Analytics, 2016.) 

http://public.deloitte.com/media/analytics/pdfs/us_ba_Deloitte3minDatascientist_021813.pdf
http://public.deloitte.com/media/analytics/pdfs/us_da_3min_guide_cognitive_analytics.pdf
http://analytics.ncsu.edu/?page_id=4184
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As academia adapts to supply fresh data science talent, organizations will be capable of 
promoting a more robust data science program. But academia is not the only pipeline TSM&O 
should look to tap when building up data analysis talent, as it could take decades for supply to catch 
up with demand in this field. Partnerships, internal recruitment and training, and outsourcing are go-to 
strategies for building a solid data science team. 

Datafication 

“Datafication” is the buzzword used to describe how our daily life’s activities are being turned into 
computerized data and this is particularly true for the Emerging Data Sources for TSM&O. With more 
data available, the transportation network’s operations and health can be further quantified, monitored, 
and optimized. Behavioral patterns that were previously unusable are now being turned into data that 
can improve processes and operations, including the transportation industry. Subsequent reports will 
explore further how integrated transportation networks utilizing smartphones, sensors, and connected 
vehicles will improve TSM&O operations. 

Predictive Analytics Driving Efficiency 

Predictive models exploit patterns found in transactional, operational, maintenance, usage, historical, 
and other types of data to identify risks and make predictions about the future. For example, car 
insurance companies use predictive analytics to calculate the likelihood that a policy holder will 
experience or cause a collision, as well as the extent to which the insurance company would be liable. 
Similarly, predictive models are commonly applied to determine future traffic patterns due to new land 
uses and crash rates of new infrastructure elements. As more data becomes available from the 
emerging data sources, TSM&O organizations can likely predict a variety of safety and mobility-
related metrics with better accuracy and refine TSM&O processes accordingly. These use cases will 
be discussed further in subsequent reports. 

Machine Learning and Cognitive Analytics 

As discussed in a previous section, machine learning is a scientific discipline combining computer 
science and statistics to use algorithms that make predictions about future data points based on what 
algorithms have “learned” from an historical dataset. These algorithms are powerful because they 
enable computers to perform actions that weren’t explicitly programmed, which in turn allows 
data scientists to uncover insights that would have been lost otherwise. Some popular techniques 
include Neural Networks and Nonparametric Statistics. While adaptive traffic control systems are in 
widespread use today, most if not all do not learn from their past actions. Using machine learning 
algorithms, traffic signal timing parameters could be updated automatically based on the abundance 
of information available from emerging data sources based on current traffic conditions, typical peak 
traffic hours, crashes reported, etc. 
 
As a reminder, cognitive analytics uses natural language processing, machine learning, and 
analytical techniques to simulate the abilities of the human brain. Cognitive analytics has the potential 
to be a valuable addition in TSM&O. Transportation networks are expanding to include even more 
data for analysis from connected vehicles, Travelers, and Infrastructure, much of it unstructured and 
semistructured data. Cognitive analytics can be used to sift through this data and find connections 
otherwise lost using traditional analytical techniques. For example, the Tennessee Highway Patrol 
(THP) implemented cognitive analytics to combat traffic accidents and fatalities by building a “real-time 
probability heat map that suggests where incidents will likely occur.” The Tennessee Integrated Traffic 
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Analysis Network (TITAN) has shifted the THP mindset “from ‘patrol and respond’ to ‘anticipation and 
prevention.” (Huddleston, Greg, “Cognitive Analytics Is Helping To Reduce Roadway Fatalities in 
Tennessee,” Accessed June 27, 2016, http://www.forbes.com/sites/ibm/2016/04/28/cognitive-
analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#204a37673dad.) 
 
By employing cognitive analytics to the emerging data sources, decisions based on scenarios, such 
as determining the traffic impacts of proposed development and construction projects, can be made 
initially by an algorithm; then augmented/approved/overturned by a TSM&O decisionmaker allowing 
one decisionmaker to become significantly more productive. Additionally, the machine learning 
component of cognitive analytics allows the augment/approve/overturn interaction of seasoned 
decisionmakers to train the algorithm, imbedding their experience into the system. This is a powerful 
way to create systemic knowledge transfer that is not restrained by physical location. The experience 
of the best decisionmakers can be leveraged by new employees to immediately improve their 
performance. Furthermore, cognitive analytics with natural language processing can be leveraged to 
understand and incorporate public sentiment through analysis of social media and other sources of 
public opinion into the design and construction of a new infrastructure, such as a metro line. (Holecy, 
Miro, “Cognitive Computing Can Help to Meet Citizens’ Expectations from Transportation Services,” 
Accessed April 7, 2016, https://www.ibm.com/blogs/insights-on-business/government/cognitive-
computing-transportation/.) Cognitive Analytics Technologies, like IBM Watson, are still on the 
Gartner Hype Cycle. 

Real-Time Analytics and the Internet of Things 

IoT has created an explosion of data that is accelerating opportunities to use real-time, streaming 
data. Social media platforms, connected vehicles, roadside units (RSUs), GPS applications, and other 
sensors and devices are streaming constant information that can be gathered and analyzed to make 
real-time decisions. For example, users are becoming active participants in the dissemination of traffic 
data by using Waze to report crashes, traffic congestion, police activity, gas prices, and other hazards 
and information for drivers. This data is then immediately available for other drivers to adapt their 
routes on-the-fly and avoid potential slowdowns. More details for both real-time analytics and IoT will 
be provided in subsequent sections. 

Geospatial Analysis 

Geospatial analysis is the gathering, display, and manipulation of imagery, GPS, satellite 
photography, and other data. The data is rendered in terms of geographic coordinates or street 
addresses and postal codes. Geospatial data enables an organization to supplement traditional data 
with time and location, as well as spatial and surface analyses, and plays particular importance for 
TSM&O. The emerging data sources analyzed in this project will enable new forms of network 
analyses of traffic patterns, origin-destination matrix synthesis (vehicles, pedestrian, etc.), construction 
project prioritization, and other use cases. Geospatial analysis using big data will be a key component 
of the content in subsequent reports. 
 

 

http://www.forbes.com/sites/ibm/2016/04/28/cognitive-analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#204a37673dad
http://www.forbes.com/sites/ibm/2016/04/28/cognitive-analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#204a37673dad
https://www.ibm.com/blogs/insights-on-business/government/cognitive-computing-transportation/
https://www.ibm.com/blogs/insights-on-business/government/cognitive-computing-transportation/
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Chapter 6 Leading Commercial 
Practices and Tools 

This chapter briefly describes the leading 
commercial practices and tools used to aggregate, 
store and use large amounts of data. The chapter 
is organized according to the steps of the big data 
process model described in chapter 5 through the 
topics of data acquisition, marshalling, and 
analysis. After reading this chapter, the reader will 
have a better understanding of some of the key 
leading practices and commercial tools for 
handling extremely large data sets. These tools and practices are not common today in Transportation 
Systems Management and Operations (TSM&O); so it is important to understand the general 
landscape before discussing the application of certain tools and technologies. Chapter 6 then provides 
some cost and capability comparisons of commercially available tools that are expressly designed for 
handling large data sets.  

Chapter 6 Objectives
• Introduce leading commercial practices

and tools in each of the process model 
steps. 

• Introduce key terminology, product names,
and capabilities of tools prevalent in the 
industry. 

A common organizational theme of the following sections is to first discuss leading and/or emerging 
practices in this landscape and then discuss a few of the leading tools and technologies used to 
accomplish these practices. Any examples provided are only intended to be representative; and are 
not considered recommendations. Additionally, the information contained below, should be considered 
from the perspective of a snapshot in time (spring 2016) and is likely to change rapidly. Every effort 
has been made to provide the most leading edge information to ensure maximum continued 
relevancy. 

Data Acquisition 

Leading Practices 
In 2012, it was estimated that over 400 million tweets were sent on a typical day. (Farber, Dan, “Twitter 
hits 400 million tweets per day, mostly mobile,” Accessed May 9, 2016, 
https://www.cnet.com/news/twitter-hits-400-million-tweets-per-day-mostly-mobile/.) In terms of data 
analysis, special tools are required to effectively analyze data produced in this quantity and velocity. 
An API, or Application Programming Interface, is the term used to refer to the interface between one 
software system and another for the purpose of exchanging data. For example, Twitter has access to 
a massive amount of data that many TSM&O agencies may be interested in harnessing, and they 
have developed several APIs to allow the public to access their data, including: 

• Firehose APIs:  deliver data as it becomes available, but without limitations on the number of
searches—the only way to see 100 percent of the data in real time. Using a Firehose API is
like fishing with a net stretched across the river:  100 percent of the fish will be caught.

https://www.cnet.com/news/twitter-hits-400-million-tweets-per-day-mostly-mobile/
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• Streaming APIs:  use a persistent connection (i.e., one that doesn’t close) to deliver data 
immediately as it becomes available. This can be compared to fishing with a pole in a river. 
There is a limit to the number of fish that can be caught. 

• Search APIs:  use a temporary connection to search for matching criteria within a pool of 
existing data at that given time. Using a Search API is like picking out a certain fish for dinner, 
based on a set of criteria (price, type of fish, weight, color, etc.) and choices are limited to the 
current selection of fish in the market. 

• RESTful APIs:  use a temporary connection to a Web service to initiate a single request for 
data. Using this type of API is like calling a marketplace vendor to ask if a certain type of fish 
is available or in stock. 

 
A software system is typically described as exposing an API for other systems to connect to. The 
consideration of the types of APIs for the different emerging data sources is a key consideration for the 
use cases for TSM&O applications to be developed further in subsequent reports. 

Emerging Practices 
IoT is proliferating across all industries and market sectors enabled by the Internet and Internet 
Protocol (IP) communications. Very similar to the way that ruggedized Ethernet switches have 
revolutionized the communication networks of DOT to existing and new infrastructure over the last 15 
years, the general trend of IoT technologies and platforms for use by a variety of industries may 
enable TSM&O organizations to acquire data from connected travelers, vehicles, and infrastructure at 
lower cost and easier integration than “rolling our own” in the next 10 years. The following components 
make up the fundamental infrastructure required to support IoT: 

• Edge devices:  the “things” including wearable technology, vehicles, industrial equipment, 
phones, and anything that can be connected to a network, fitted with sensors, actuators, or 
embedded computers.  

• Gateways:  close the gap between devices in the field and the cloud, where data is collected, 
stored, and manipulated by business applications. Gateways will use secure connectivity 
solutions via Dedicated Short-Range Communications (DSRC), cellular, Wi-Fi, Bluetooth, and 
ZigBee networks. 

• Cloud platforms:  provide APIs and tools that enable developers to build real-time IoT 
applications to connect devices with the cloud. 

 
The use of these components for data collection has been happening for generations, in particular at 
Departments of Transportation (DOT) for connecting infrastructure for TMS&O. Existing systems use 
specific protocols and data collection architectures, and have limited scalability to connected vehicles 
and travelers as they currently exist. The massive global push for standardized IoT platforms is 
incredibly well understood at this stage, but is an important trend that may reduce cost and complexity 
to DOTs in implementing solutions for TSM&O applications since the need for such technologies 
extends far wider into industrial and business needs. How IoT platforms may be leveraged to 
seamlessly connect existing infrastructure and connected devices, how to integrate or combine with a 
big data solution, and other questions will all need to be answered in the coming years. Several new 
platforms for IoT are discussed in the next chapter. 
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Data Acquisition Tools 
As with all sections about technology, the tools and technologies discussed are only examples that are 
intended to represent the current landscape rather than a recommendation or suggested approach. 
Additionally, the information provided is considered highly susceptible to rapid innovation and changes 
and is only provided as a “snapshot” in time of many of these tools. 
 
As mentioned previously, Hadoop is seen as an open-source market leader, but frequently it also is 
the only option to be found for specific tasks. For example, getting large-scale data into a distributed 
environment has led to several Apache products developed for Hadoop to make data ingestion faster 
and easier. While each of these tools were developed for the Hadoop platform, some may be capable 
of working with other solutions (e.g., massively parallel processing (MPP) databases) with minor 
modifications (e.g., Sqoop and Storm). 
 

1. Apache Flume:  is a distributed and highly available tool for collecting, aggregating, and 
moving large amounts of fast moving data (e.g., transactional log data or a Twitter feed), into 
a central repository. It is tightly integrated with the Hadoop ecosystem and is often used to get 
data into Hadoop Distributed File System (HDFS). 

2. Apache Kafka:  can handle real-time feeds and is considered a general purpose tool not 
necessarily designed for Hadoop. Hadoop is just one of the possible systems capable of 
receiving data streamed through Kafka. 

3. Apache Sqoop:  allows for efficient bulk transfer between Hadoop and a more traditional 
structured data store such as a relational database. This characteristic makes Sqoop 
particularly important for organizations looking to update and/or transfer their traditional 
relational databases. 

 
A few other important data acquisition tools in the Hadoop ecosystem include Apache Storm and 
Apache Chukwa. Storm is a real time event processing framework in the Hadoop ecosystem. Like 
Spark (which will be discussed more in subsequent sections) it is the underlying layer for many other 
tools to distribute jobs and consolidate their results in a Hadoop cluster. Finally, Chukwa is a data 
collection system used to monitor large distributed systems by collecting system metrics and log files. 

Data Marshalling 

Leading Practices 
The automated steps needed to clean, organize, store, and manage data become vitally important 
when too much data is acquired in a given timeframe to perform these tasks manually. Often, these 
processes are more time consuming in central processing units (CPU) cycles than the queries and 
reports that run on the data during the analysis phase. These steps are referred to as data 
marshalling, and due to the challenges associated with the veracity, velocity, volume, and variety of 
big data, new considerations for traditional data marshalling practices are becoming necessary. For 
example, when a problem of volume comes up, which it frequently would in a big data solution (e.g., 
scalability, replication, archival, backups, etc.), one general solution is to use inexpensive, commodity 
hardware to offset the cost of excess storage. The next few sections will discuss many leading 
practices in data marshalling beyond the use of commodity hardware and how each has had to adapt 

https://chukwa.apache.org/
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to for scalability, compression and archival, fault tolerance and high availability, replication, security, 
and backup and disaster recovery. 

Scalability 

Scalability refers to a system’s ability to increase and/or decrease storage resources as needed. 
Based on the predictions mentioned earlier, the connected city of 2021 is forecasted to grow 
400 percent in connected travelers, 300 percent in connected vehicles, and 25 percent in connected 
infrastructure. As the connected city continues to grow, the amount of data stored within the system 
will need to grow from terabytes to petabytes in 10 years—explaining the importance of scalability. 
 
Drastic increases in volume and velocity from emerging data sources cannot be ignored, yet 
frequently, organizations do not know (and perhaps cannot know) the peak scale of their data. Being 
able to scale quickly and affordably is a must. To that end, many solutions recommend using low-cost 
storage systems that allow them to achieve quick and affordable scalability. For instance, Hadoop and 
some MPP databases recommend the use of commodity hardware for storage. 
 
Scalability is an important factor for many of the subsequent practices discussed. The sheer volume 
that emerging data sources, such as connected vehicle data, bring introduces the most obvious layer 
of complexity. From there, the other four Vs of big data introduce new complexities and inefficiencies 
to the way that data needs to be handled. 

Compression/Archival 

For example, one method of managing the size of 
data being accumulated (particularly when 
considering the volume of historical data that may 
not be needed often, but either can’t or shouldn’t 
be destroyed) is compression and/or archival. 
 

 

Often, data marshalling processes are more 
time consuming in CPU cycles than the 
queries and reports that run on the data 
during the analysis phase. 

Compression and archival refer to the ability of a system to reduce data storage needs by 
decreasing the resources required and consolidating them for long-term storage, respectively. For 
example, as old information becomes outdated or isn’t used frequently, the cost of storing the 
information may outweigh its value. This will particularly be true for “raw” BSM data if the TSM&O 
organization is storing this natively since more than 1.3PB of the 2.1PB total storage needed for a 
typical agency in 2021 will be Basic Safety Messages (BSM). However, both data compression and 
archival increase latency when the data is needed again (through methods of decompressing or 
retrieving data), making the decision of what to compress and/or archive a strategic business decision. 
However, as always, big data is complicated by the other four Vs, and the increased speed with which 
data is brought into organizations makes fast and accurate business decisions a necessity. 

The ability to provide fast and efficient data compression options to an organization are key. Hadoop, 
for example, inherently provides multiple methods for compressing/decompressing data at varying 
speeds and efficiencies. Additionally, many solutions exist to provide the massive storage required to 
eliminate the need for archival procedures. 
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Fault Tolerance/High Availability 

Planned downtime activities for a typical system can include kernel switch, hardware maintenance, 
and operating system maintenance. Unplanned downtime can occur due to unforeseen issues which 
lead to application nonavailability. 
 
The combination of fault tolerance and high availability make up the ability of the system to remain 
operational in the case of system failure (e.g., failure of a single node). The two concepts are very 
closely related, and frequently confused; however, there are slight differences. A highly available 
system provides methods (typically involving software and hardware) for maximizing the time 
in operation for the system (e.g., through shared services and resources), and a fault tolerant 
system provides methods (typically purely hardware) of continuous service (e.g., through 
failover nodes). For instance, if a traffic signal’s power source is lost, a highly available system would 
immediately dispatch maintenance, in the meantime, however, a fault tolerant system would have a 
battery backup system failover in place to immediately replace the power loss without system 
downtime. Performance may be affected in the fault tolerant scenario (perhaps the signal can only 
perform in flash mode), but it ensures that the system will remain active rather than having an 
intersection with dark signal heads. The two concepts are not mutually exclusive and are frequently 
considered together to provide maximum availability of the system. 
 
The more complex a system becomes, such as an increase in the number of nodes or distributed 
organization of the data, the more difficult to manage the solutions becomes. As a result, there are 
critical considerations that organizations must understand when designing their solution, including the 
cost of downtime, the recovery time objective (the maximum time an information technology (IT) 
process can be down before suffering unacceptable consequences), and the recovery point 
objective (the maximum amount of data an IT process can afford to lose while down before suffering 
unacceptable consequences). 
 
Luckily, because most people need to sleep and most do so at night, there is little travel activity during 
the night. Planned downtime of tools and systems for TSM&O can be managed during periods of 
low travel activity with minimal impact. Unplanned downtime of tools and technologies during the day 
impacts operations only to the point that the systems are used for mission-critical use cases. These 
issues will be analyzed further during subsequent reports. 

Replication 

Replication is the system’s ability to copy data to provide fault tolerance of system processes. 
The major advantages of replication are to: 

• Improve data availability and scalability. 

• Provide a failsafe backup. 

• Provide load balancing. 
 
These advantages occur because replication of data provides redundancy and distribution of the data 
so that computations and other processes can occur in duplication and across resources. For a 
solution built to handle the data volumes projected for the next decade, the replication of data 
becomes significantly larger and more complex to manage, and understanding exactly where the data 
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is (and all copies of it) becomes a more challenging task. The solutions discussed in this report rely on 
a master node to track all data stored on the system. 

Security 

Security provides the ability of a system to meet legal and regulatory compliance standards through 
user access controls, data encryption, and so on. According to CNN Money, 47 percent of U.S. adults 
had their personal information exposed by hackers in 2014. (Pagliery, Jose, “Half of American adults 
hacked this year,” Accessed May 14, 2016, 
http://money.cnn.com/2014/05/28/technology/security/hack-data-breach/.) With major security 
breaches and fraud incidents making international headlines, organizations are taking steps to 
address the growing problems of advanced persistent threats, fraud, and insider attacks. 
 
Big data requires the same security standards as traditional Relational Database Management 
System (RDBMS) and networks, but introduces several problems at scale. These problems 
include challenges such as diverse data sources and formats, speed at which it’s being received, 
granular access controls, and others. Security is constantly being refined to meet the standards of the 
Federal Government. The main approach suggested for TSM&O organizations relative to Personally 
Identifiable Information (PII) and data security is not to store any PII at all, such as is being baked in to 
the public connected vehicle system. 
 
When determining security solutions, organizations will need to determine the security requirements of 
their specific Agencies. For examples, if the recommended approach of not ingesting PII data is 
followed, the system will have lower security standards to meet. Otherwise, Agencies will need to 
explore and implement the latest security protocols and standards (e.g., attribute-based encryption). In 
addition, organizations should establish comprehensive controls for configuration and management of 
a multinode environment which may far exceed the security provisions in a typical agency DOT 
environment today. This will be explored further in subsequent reports. 

Backup/Disaster Recovery 

Many agencies mistakenly believe that routine backup operations will have them covered in the event 
of an outage or a disaster; however, data backup and disaster recovery are not the same. 
 
Data backup refers to the ability of the system to preserve all necessary content by systematically 
storing data, while data recovery refers to the process of how data will be recovered in the case of 
serious failures. Disaster recovery is intended for the most extreme types of system failure, such as 
an earthquake, flood, fire, and requires geographically distant data centers and disaster recovery 
centers to prevent large data clusters and their back-ups from suffering effects of one large disaster. 
Many and most TSM&O organizations currently implement backup strategies; far fewer consider 
disaster recovery strategies. 
 
Both of these safeguards present a serious problem when the size of the solution is considered. Each 
solution will likely have their recommended approach; however, Hadoop’s inherently fault tolerant 
design and data replication process make standard backups unnecessary (although Agencies will 
have standards they need to follow or get approved through appropriate channels). The need for 
disaster recovery of emerging data source storage is an open question and would depend on the how 
the information is needed for mission-critical use cases. This will be explored further in subsequent 
reports. 

http://money.cnn.com/2014/05/28/technology/security/%E2%80%8Chack-data-breach/


Chapter 6 Leading Commercial Practices and Tools 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  76 

Data Marshalling Tools 
As noted in the sections above, there are many tools that can be used for data marshalling. Several 
tools and technologies used to store, manage and prepare data that will be discussed in subsequent 
sections include Massively Parallel Processing (MPP) databases, NoSQL databases, and the 
Hadoop ecosystem. This section will briefly explain these tools and technologies. 
 
As with all sections about big data tools, the tools and technologies discussed are only examples that 
we feel represent the current landscape and do not represent a recommendation or suggested 
approach. Additionally, the information provided is considered highly susceptible to rapid innovation 
and changes and is only provided as a “snapshot” in time as of spring 2016. 

Massively Parallel Processing Databases 

MPP databases use a “shared-nothing” architecture, where neither memory nor disk storage is 
shared among processors, to isolated resources across independent compute nodes within a system 
eliminating single points of failure. (Stonebraker, Michael, “The Case for Shared Nothing,” Accessed 
June 27, 2016, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.5370&rep=rep1&type=pdf.) Each node is 
linked to a master node (or multiple masters) that manages data loading, storage, preparation, and 
processing resources across each compute node. This architecture allows jobs to be split into smaller 
processes to be executed across the system concurrently, which is referred to as parallel 
processing. MPP databases are extremely scalable due to the simplicity of adding additional identical 
compute nodes (or master nodes) to provide more resources. The following figure demonstrates what 
an MPP database might look like and how it can easily scale horizontally: 

 

Figure 17. Illustration. Massively parallel processing shared-nothing architecture. 
(Source:  Adapted directly from an EMC Corporation InFocus article,  

“The Data Warehouse Modernization Act,” 2016.) 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.5370&rep=rep1&type=pdf


Chapter 6 Leading Commercial Practices and Tools 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  77 

Several examples of MPP databases include Teradata, Greenplum, Netezza, and Exadata and are 
very briefly described here. (DB-Engines, “System Properties Comparison Netezza versus Oracle 
versus Teradata,” Accessed May 12, 2016, http://db-
engines.com/en/system/Netezza%3Boracle%3Bteradata.) Additional details about the costs and 
capabilities will be discussed in subsequent sections. 

• Teradata provides a market-leading MPP database that relies on a tightly integrated 
commercial-off-the-shelf (COTS) hardware and software solution. Teradata is typically 
considered the most expensive option due in part to its high support costs, required software 
and hardware package, and significant maintenance efforts. 

• Greenplum is an MPP database developed by Pivotal that is recommended to be 
implemented on commodity hardware for significant cost savings. However, Greenplum only 
provides software licenses and support; hardware is not an intrinsic part of the solution. 

• PureData is an IBM developed MPP solution that is much more recent to the market and lags 
in adaptability (e.g., programming languages and operating systems (OS) supported), but 
may provide cost savings to make up for this. 

• Exadata is Oracle’s MPP database on the market, and provides significantly more 
adaptability (e.g., programming languages and OSs supported) than other solutions, has 
been in the market almost as long as Teradata, and has a significant market share. 

 
For all their differences, each of the MPP databases discussed offers a market-tested solution with 
what appear to be converging cost models. However, they will each also have similar limitations, 
including market trends and unstructured data capabilities. MPP databases are Relational Database 
Management Systems (RDBMSs) and do not ingest, store, and process unstructured data and 
NoSQL (discussed in the following section) tasks very efficiently. Part of the reason for this ties 
into the first limitation, which is that MPPs are established technologies (and have many benefits 
because of this). Hadoop and many of the tools it enables are forward-looking technologies. Much of 
this report is intended to focus on the trends of big data, hence the focus on Hadoop. 

NoSQL (Not Only SQL) Databases 

Another tool worth mentioning for data marshalling is the use of Not Only SQL (NoSQL) databases. 
NoSQL databases are large, scalable databases that organize data in different ways to use 
unstructured, semi-structured, and complex data together. One of the methods by which NoSQL 
improves performance above traditional SQL-based RDBMS is to sacrifice select aspects of ACID 
(Atomicity, Consistency, Isolation, and Durability) processing. This introduces potential losses of data 
in the case of failure, but saves time and resources during transactions and uses mitigating strategies 
(e.g., data replication techniques) to minimize data loss. 
 
Examples of NoSQL databases include the following: 

• Key Value Store:  database records are stored and retrieved using a key that uniquely 
identifies the record. It is commonly used for large volume and high velocity transactional 
applications, such as Amazon. Examples include Redis, and Dynamo. 

• Document Store:  is a subclass of Key Value Store, where metadata (data about data; e.g., 
column headers) is extracted for further optimization. Frequently used for applications that 

http://db-engines.com/en/system/Netezza%3BOracle%3BTeradata
http://db-engines.com/en/system/Netezza%3BOracle%3BTeradata
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use text-heavy, digital context, such as Kindle. Metadata is the most heavily accessed data 
and needs low response time. One example includes MongoDB. 

• Column Store:  stores data in primary keys by columns to significantly speed up search 
functions. This is used for Customer Relationship Management (CRM) systems, library 
catalogs, and other ad hoc inquiry systems. One example includes Cassandra. 

• Graph Store:  stores data in “nodes” (single data points) and “edges” (relationships between 
nodes). This is used in relationship-heavy applications, such as social networking Web sites 
or a telecommunications provider’s networks. One example includes Neo4J. 

 
A NoSQL database is generally not a standalone product that will meet all of the needs of 
TSM&O applications, and they will not be discussed independently during subsequent sections 
analyzing cost and capabilities. Traditional SQL databases can’t handle the unstructured, 
semistructured, and complex data and rely heavily on ACID processes. NoSQL provides options for 
organizations to break out of those constraints and are an important consideration for agencies that 
must handle significant amounts of unstructured, semistructured, and otherwise complex data types. 
Several of the examples provided are actually Apache research projects that can be implemented as 
a component of the Hadoop ecosystem. For TSM&O use cases of the emerging data sources, the 
graph store concept may hold significant promise. This may be discussed further in subsequent 
reports. 

The Hadoop Ecosystem 

Hadoop is an open source, enterprise big data file system designed to provide reliable and scalable 
distributed storage and computing. It is referred to as an “ecosystem” because it is built on a 
distributed file system called the Hadoop Distributed File System (HDFS) with a computing framework 
called MapReduce and customized through the use of add-on components as shown in figure 18. 
Hadoop is a generic processing framework designed to execute queries and other batch read 
operations against massive datasets that can scale from tens of terabytes to petabytes in size. 
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Figure 18. Illustration. A typical Apache Hadoop ecosystem. 

(Source:  Hadoop Essentials by Swizec Teller, 2015.) 

Originally developed and published by Google, the distributed file system concept grew into the open 
source big data solution that it is today. Hadoop’s popularity continues to grow because it continues to 
meet the needs of many organizations for flexible data storage and analysis capabilities with the goal 
of also maintaining costs. 
 
Hadoop has been particularly useful in environments where massive server farms (large collections of 
servers) are used to collect data from a variety of sources. Hadoop is able to process parallel queries 
as big, background batch jobs on the same server farm. This saves the user from having to acquire 
additional hardware for a traditional database system to process the data, assuming such a traditional 
system can even scale to the required size. Hadoop also reduces the effort and time required to load 
data into another system, allowing the user to process it directly within Hadoop. This overhead would 
become impractical with very large datasets. 
 
Several vendors have taken the freely available, Apache open source code and developed their own 
distributions (some with proprietary add-ons and adaptations). Several vendors that provide Hadoop-
bases platforms include Cloudera, Hortonworks, Map R, Greenplum, IBM, and Amazon; however, 
Cloudera, Hortonworks, and MapR tend to lead the pack as of spring 2016 and will be discussed 
further in subsequent sections. 
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• Cloudera is the vendor that has been in the market longest and historically holds the biggest 
market share. Cloudera provides a few proprietary tools to add capabilities of the cluster, 
including a cluster management tool and an in-memory query engine; however, they also 
don’t support certain Apache projects in pursuit of others (e.g., Cloudera supports Spark 
instead of Storm). They provide a free version with several limitations (e.g., not all proprietary 
capabilities are enabled) as well as an “enterprise” version that unlocks all capabilities, and 
includes support. 

• Hortonworks provides 100 percent open source products and contributes everything that it 
develops back to the open source community. Hortonworks is capable of quickly adapting 
and growing to new Apache releases due to its lack of incompatibility with proprietary work. 
This may be particularly important for Agencies that are interested in using leading edge tools 
(e.g., geospatial tools). 

• MapR provides the most proprietary product, including the file system that it’s built on 
(MapRFS). Its ability to upgrade with Apache releases is much more limited; however, it has a 
reputation as the fastest and most efficient Hadoop platform. Also provides a free version as 
well as its “enterprise” edition. 

Data Analysis 

Leading Practices 

Descriptive Analytics 

The bread and butter of data analysis using basic statistics such as sums, averages, and percent 
changes is called descriptive statistics. Descriptive statistics are often the first step on the journey of 
data discovery, but can only give limited insights. What’s more, descriptive statistics can be deceptive 
when applied without regard for the shape (or distribution) of the data being described. For example, 
averages are a widely used descriptive statics that can be misleading to use in the case of outliers. 
(Paret, Michelle, “Using the mean in Data Analysis:  It’s Not Always a Slam-Dunk,” Accessed April 5, 
2016, http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-slam-dunk.) To 
avoid making decisions on improperly applied summary statistics, a thorough exploration, and 
understanding of the data is necessary. 
 
A massive volume of data can affect an analyst’s ability to thoroughly explore and understand their 
data particularly when it’s rapidly changing and perhaps from questionable sources (the crux of the big 
data problem). These problems are equally as true at the introductory level of statistics as they are for 
more advanced analyses, in part because these descriptive analytical techniques are the foundation 
of all analytics to come. 

Querying and Reporting 

Querying and reporting are basic functions of virtually any analytically oriented group or function 
across an enterprise. Querying typically seeks to answer a specific question and is accomplished by 
isolating a subset of data based on the query criteria (i.e., licensed drivers, aged 35 to 50, owning a 
midsized sedan that is more than 5 years old). Reporting typically encompasses summary statistics 

http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-slam-dunk
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and aggregations of historical data and is thereby limited to gaining insights on the past with a blind 
spot to the future. 
 
While there exist many proprietary, commercial reporting tools in the this vendor space, statistical 
programming languages such as R and Python have developed their own open source reporting tools 
and packages that allow for reproducibility (in other words, accuracy of the analytical model due to its 
ability to be reproduced) and streamlining of basic reporting. These tools and many, many others 
(commercial and open source, both) are rapidly being added as important aspects of a big data 
ecosystem with an eye towards analytical flexibility (e.g., the in-memory engine Spark is providing the 
ability to write Spark code in R, Python, and Scala with more languages to be supported in the future). 

Interactive Visualization 

Interactive visualization includes real-time searching for patterns to discover new information For 
example, the image below shows a Google Maps screenshot of the aftermath of gridlock in Texas 
after a serious collision of two semitrailers. Visualizations open up a new way for people, from 
experienced data analysts to inexperienced laymen, to understand the data and draw meaning. 
 

 
Figure 19. Google maps image of Texas gridlock. 

(Source:  http://www.cnbc.com/2015/02/27/15-cars-2-semis-gridlock-us-75-in-texas.html, 2015.) 

The advent and proliferation of powerful statistical and analytical tools that can be applied to the big 
data ecosystem has given rise to the need for visualization tools. The increasing complexity and 
sophistication of statistical data analysis methods require equally powerful methodologies to visualize 
and interpret output results, especially for TSM&O use cases that are highly geographic in nature. In 
addition, due to the increasing size of data, “dense graphical representations are more effective for 
exploration than spreadsheets and charts. Furthermore, because of the exploratory nature of the 
analysis, it must be possible for the analysts to change visualizations rapidly as they pursue a cycle 
involving first hypothesis and then experimentation.” (Polaris Web site) 

http://www.cnbc.com/2015/02/27/15-cars-2-semis-gridlock-us-75-in-texas.html
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Emerging Practices 
Each type of analysis discussed above (descriptive, querying and reporting, and visualizations) can be 
considered the foundational building blocks (in the order discussed) that are explicitly necessary to 
enable the use of advanced analytics, which can be used as a blanket term for the latest emerging 
practices in data analysis. The following sections briefly describe several of the most popular 
emerging practices in analysis. 

Forecasting 

Forecasting is a hallmark of advanced analytics because it is the first opportunity to use data in terms 
of the future. All previous skills discussed are only capable of providing insights into past and 
occasionally real-time experiences. Forecasting analytics generally exploit properties of data 
measured over time to provide these insights. A sequence of numbers measured over a continuous 
time interval is referred to as a time-series; this can include data like Road Weather Information 
System (RWIS) and traffic flows. 
 
Time series data is an excellent example of data that will likely be streaming in real-time and has the 
ability to grow rapidly with the expected increase in connected vehicles, travelers, and infrastructure. If 
every connected traveler and vehicle is providing real-time data (e.g., speed, route being taken), 
significant and accurate predictions of future actions may be able to be realized (e.g., expected traffic 
delays, predicted route improvements, etc.). 

Regression 

Regression analysis is one of the more commonly used analyses that may not generally be 
considered an “emerging” practice; however, it is an important tool in any analytics process. 
Regression is used to understand the correlation between a dependent variable and one or many 
independent variables. For example, regression could be used to understand the relationship between 
gas prices and crime rates on the number of commuters using metro systems in large metropolitan 
areas. In this example, the price of gas and the city crime rate are the predictors, or independent 
variables, and the number of commuters is the dependent variable. The effect (i.e., increase or 
decrease) on the number of commuters when gas prices rise and fall and when crime rises and falls 
can be estimated, or inferred, by regression. Specific inferences are possible in regression because of 
mathematical assumptions made in regression analysis; understanding underlying assumptions of 
regression are important to be able to make sound inferences. As the volume of data used in a 
regression increases, the model is able to converge on more precise estimations of true parameter of 
interest. As the variety of data available to consider in an analysis increases, so do the options data 
scientists have to meet mathematical assumptions needed to build a useful regression model. 
 
Each of the most popular statistical programming languages (R, Python, SAS, etc.) will have their own 
regression models/tools that will require less technical coding (for example, instead of using 
MapReduce directly); however, they will require at least minimal statistical programming skills. 

Optimization 

Optimization uses mathematical models to find the best course of action according to some objective 
function, in a situation based on constraints and possible alternatives. While in simple situations, 
people do this intuitively; however, there are many complex systems where the most beneficial set of 
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control actions or Demand Management actions are nonobvious. For example, determining ramp 
metering rates in a freeway corridor or traffic signal timings on an arterial. The Emerging Data Sources 
from connected travelers and vehicles can enhance the abilities of TSM&O organizations to provide 
better service to the public. Python, R, and SAS (a nonopen source statistical programming 
language) each provide several advanced optimization methods such as linear and nonlinear 
programming, genetic algorithms, and other search methods. 

Machine Learning 

Machine learning is the science of enabling computers to act without being explicitly programmed. 
Examples include self-driving cars and effective Web searching. Machine learning combines aspects 
of computer science and statistics to provide powerful analysis of data. Specifically, machine learning 
concerns the construction of algorithms which learn from past data to make predictions about future 
data points. 
 
Clustering is one of the most intuitive and fundamental machine learning algorithms in use today 
across a wide range of domains. Clustering is about finding similar subgroups of data points in a 
dataset. For example, a clustering of traffic incidents at a specific intersection or road segment may be 
affected by specific variables, such as visibility, inclement weather, pavement conditions, etc. 
Additionally, clustering could be used for targeted marketing campaigns aimed at increasing public 
transportation use. 

Network Analysis 

Network analysis is used to visualize complex networks with graphical tools. It is a powerful way to 
mathematically represent complex systems across many different domains and inherently the 
configuration of transportation systems. 
 
Today, there is a surge of interest in visualizing networks for analysis purposes. The advent of 
statistical computing and the development of new techniques and models for their analysis and 
interpretation have accelerated interest as well. For example, network analysis could be used to 
assess transportation networks for pain points or vulnerabilities. These would be crucial insights that 
could be leveraged for future expansion of highways and bridges, etc. Emerging tools include the 
NoSQL graph stores discussed in a previous section. Neo4j is one of the most popular options with 
a significant market share and an open source version available for anyone to use. 

Data Analysis Tools 
A variety of tools and techniques are available today to analyze large volumes of data in batch, near 
real-time, and real-time speeds; however, many of these analytical tools are dependent on the 
statistical programming languages used. These tools can be nonstatistical languages like Java in 
addition to more traditional statistical languages like R, Python, and SAS. Many of the leading and 
emerging practices discussed above are simply models and methods that each language develops 
independently (e.g., optimization models and regression models). Hadoop and other solutions provide 
many ways to employ these methods as well as a few ways to employ them directly (e.g., 
MapReduce code). The following sections identify what we’ve referred to as the “tools” of data 
analysis; however, this is slightly misleading because these are not specific implementation 
recommendations, but rather generic methodologies that give consideration to what the business 
needs of the Agencies are. For example, SAS provides several options for enhancing the big data 
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ecosystem through in-memory, in-database, high-performance computing products. Each product 
provides tradeoffs between performance and statistical needs. 

Disk-Based Analytics 

Disk-based analytics is the traditional method used for reading, writing, and processing data where 
applications query the data stored directly on physical disks. A disk-based database reads and writes 
the data directly from the disk and brings the data to the code. When dealing with large amounts of 
data, the data movement between physical disks and memory can create latency issues. It is typically 
the slowest option available, but has been around longer and is more frequently used and understood 
by users. 
 
MapReduce and grid computing are leading examples of nontraditional, disk-based analytics that 
use processing on distributed storage to improve performance. 

In-Database Analytics 

Compared to traditional disk-based, in-database analytics are generally a faster, more flexible and 
efficient way to process increasingly large data. They use a distributed architecture (e.g., MPP or 
Hadoop) to process large datasets in blocks across a cluster of servers; however, to reduce data 
movement and latency, the code is brought to the data. It takes significantly fewer resources to move 
the code to the data rather than the other way around allowing for a more scalable solution and faster 
processing speed. 
 
Key products that utilize this model include SAS In-Database and SPSS In-Database; however, most 
languages will have some in-database options available. SAS has significantly adapted their standard 
(proprietary) language (which is a disadvantage in terms of user adoptability) to provide in-database 
tools that are critical for performing large merges and sorts (e.g., merging traffic and incident reports 
with map locations). 

In-Memory Analytics 

In-memory analytics is the fastest method of data analysis and is best suited for solving complex 
and time-sensitive business scenarios. The key advantage is the lift of data into memory to reduce 
data movement and increase performance speeds. With the cost of memory (and storage in general) 
always decreasing, in-memory analytics are becoming a more cost effective approach. However, even 
with a general decrease in the cost of memory, it is still significantly more expensive than disk storage, 
and in-memory analysis will require more expensive, memory-intensive machines because the entire 
dataset needs to be lifted into memory simultaneously. 
 
Products like Spark, SAP Hana, SAS LASR, and SAS In-Memory Statistics are all prime example of 
in-memory analytic tools. Additionally, utilizing in-memory analytics provides the necessary speed to 
enable visual analytics and streaming analytics. 
 
Visual analytics is the use of interactive visual interfaces for the purpose of analytical reasoning. This 
methodology can be seen as an approach combining visualization, data analysis, and human factors 
(cognition, perception, etc.). Using visual analytics, users may directly interact with data analysis 
capabilities to produce meaningful information and develop insight from dynamic, ambiguous, and 
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often conflicting data. Zoomdata and Databricks are both market analysis tools that allow customers 
to explore, analyze, and communicate data in a visual manner. 
 
Streaming analytics is the ability to analyze data as soon as it arrives to predict an outcome; it is 
what enables real-time analysis and, perhaps more importantly, real-time action. One of the most 
common examples of streaming data is Twitter and other social media platforms. If an Agency was 
interested in understanding the current public sentiment as important news was being announced, 
data could be streamed in real-time from Twitter, Facebook, and other platforms based on keyword 
queries. Analyses could be performed using in-memory tools, and impact the news being provided. 
 
Real-time insights can be gained from streaming analytics with connected cell phones, vehicles, 
infrastructure, and other devices. Many IoT scenarios will be extremely applicable for streaming 
analytics, such as the detection of nonrecurrent queues, bottlenecks, or changes in origin-destination 
patterns. 
 
Apache Spark Streaming and Apache Storm are two leading examples on the market for this 
capability. 
 
Several benchmarking and performance tests have been described here to demonstrate the leaders 
in streaming analytic capabilities. The results of benchmarking tests can be seen in the table below: 

Table 8. Benchmarking tests comparing speed and performance of Apache products. 

Benchmarking Test Summary 

Spark tied for the Daytona 
Graysort Competition 

• Spark competed and tied in the Daytona Graysort Competition where they 
processed 100TB of data (1 trillion records) on disk with 206 EC2 machines 
in 23 minutes. 

• Previous record by Hadoop’s MapReduce was 72 minutes using 2100 
machines. 

Comparison between Spark 
Streaming, Storm, and Flint 

• Yahoo performed a benchmark comparison of three of the top streaming 
Structured Query Language platforms. 

• Found that Spark, while having higher latency, is capable of handling 
higher throughput. 

Benchmark of SAS In-Memory 
for Hadoop and Revolution 
Analytics 

• SAS performed a comparison of Revolution Analytics’ RRE7 and their own 
In-Memory Statistics for Hadoop in response to previous benchmarks 
performed by Revolution. 

• SAS disputes the original Revolution benchmark, and shows faster 
performances. 

 

Big Data Deployment Options 
Given the many tools that could all combine and overlap to produce one comprehensive big data 
solution, several deployment options are available based on Agencies’ big data capability maturity and 
their IT policy on data security and privacy. 
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The figure below shows the gradient of implementation options available, and each option is 
described briefly below the figure. 
 

 
Figure 20. Diagram. Internet Technology considerations for on-premise, Infrastructure-as-a-

Service, Platform-as-a-Service, and Software-as-a-Service implementations. 
(Source:  Deloitte, 2016.) 

The “as a service” (aaS) models generally assume a cloud-based deployment (gray boxes) for the 
aspects of control an organization is willing to sacrifice for simplicity and possibly cost savings. 

• On-Premise:  Deployment offers users the ability to install, manage, and maintain every 
aspect of a big data deployment. Typical on-premise deployments require significant up-front 
costs (hardware, software licensing, etc.) but allow for greater control of the system. 

• Infrastructure-as-a-Service (IaaS):  Deployment provides scalability needs and minimizes 
responsibility for the DOT. Users are responsible for managing applications, data, runtime, 
middleware, and operating system. Instead of having to purchase hardware outright, users 
can purchase IaaS based on consumption, similar to electricity or other utility billing. 

• Platform-as-a-Service (PaaS):  Deployment allows users to develop, test, and deploy 
applications quickly and efficiently. With PaaS, users are only responsible for data and 
application tiers. Similar to IaaS, users can purchase PaaS on a subscription basis ultimately 
paying just for what they use. 

• Software-as-a-Service (SaaS):  Deployment uses the Web to deliver applications. Most 
SaaS applications can be easily accessed directly from a Web browser on the client’s side. 
This model is maintained entirely by the vendor. Like the other service models, users 
purchase a subscription to access the application. 
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Chapter 7 Cost and Capabilities 
of Computational Platforms 

This chapter addresses current computational 
platforms in the market and their relative costs 
and capabilities. In this chapter, the reader will 
gain increased awareness of the commercial 
tools and systems currently available in the 
marketplace for handling massive data sets. 
Terminology introduced in chapters 5 and 6 is not 
typically redefined in this chapter. After reading 
this chapter, the reader will have entry level 
understanding the similarities and differences of 
commercial providers’ cost models. Because the 
cost models vary so widely it is challenging to put an apples-to-apples pricing comparison together of 
one versus another. Note also that the use of vendor names and specific technology descriptions are 
not recommendations of these tools and systems by U.S. Department of Transportation (DOT). 

Chapter 7 Objectives:
• Introduce gartner’s magic quadrant for

assessing commercial tools.
• Describe differences and similarities of

cost models for commercial tools and 
systems. 

• Describe capabilities and characteristics of
commercial tools in MPP, Hadoop, and 
Internet of Things (IoT) categories. 

There are three broad categories of big data computational platforms discussed in this report. One 
type is the massively parallel processing (MPP) database. As a reminder, an MPP database 
processes large volumes of data via multiple node processors (connection points in a network), which 
segment the data into time efficient, manageable quantities. 
(http://searchnetworking.techtarget.com/definition/node.) In an MPP database, each node processor 
has its own operating system and memory resulting in a “shared-nothing” architecture. 
(http://whatis.techtarget.com/definition/MPP-massively-parallel-processing.) An MPP database quickly 
processes large volumes of data, but it cannot easily share data between the nodes, which makes 
dynamic analysis and communication difficult. 

Hadoop platforms are the second category of big data platforms and are quickly becoming 
synonymous with big data. Hadoop is a “Java-based programming framework that supports the 
processing of large datasets in a distributed computing environment”. 
(http://searchcloudcomputing.techtarget.com/definition/Hadoop.) The Hadoop distributed file system 
(HDFS) facilitates the rapid transfer of data across thousands of nodes and can be implemented in-
house on commodity servers or as a cloud-based platform-as-a-service solution (both of which will be 
discussed as implementation options). 

The third category of big data platforms can be summarized as a cloud-based IoT platform. Cloud-
based IoT platforms facilitate the secure connection and management of devices (e.g., cars, phones, 
etc.) to support the acquisition, marshalling, and analysis of nontraditional and semi-structured data 
sources. 

http://searchnetworking.techtarget.com/definition/node
http://whatis.techtarget.com/definition/MPP-massively-parallel-processing
http://searchcloudcomputing.techtarget.com/definition/Hadoop
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An aside worth noting before mentioning several solutions that Departments of Transportation can 
pursue, is the degree of change management and skills investment that is incredibly important to 
understand. While some solutions are sure to provide an easier transition or a less steep learning 
curve (e.g., Cloudera’s user-friendly console, Microsoft’s interoperability with other Microsoft products, 
etc.), each of these will present significant new hurdles for Information Technology (IT) staff, data 
analysts, and other personnel to manage and effectively use. However, these tools also are cutting 
edge and innovative solutions that may draw in new, excited staff and partners. Most platform 
providers will provide IT support (for a cost) and will have a wealth of free online resources as well as 
paid training sessions that can be attended in-person. 

Gartner’s Magic Quadrant 
Gartner’s Magic Quadrant is the industry gold standard for information technology market research 
and comparing vendor products. The quadrant provides a qualitative analysis into a market through its 
direction, maturity, and participants. Gartner’s Magic Quadrant for Data Warehouse and Data 
Management Solutions for Analytics is shown below in figure 21 and identifies the leaders, 
challengers, niche players, and visionaries in data warehousing and data management. Several key 
vendors of both MPP databases and Hadoop distributions are labeled in purple and green, 
respectively; however, each vendor is analyzed for its holistic abilities in this specific category. In other 
words, some vendors may provide additional data warehousing services that are being evaluated by 
this Magic Quadrant in addition to the specific capabilities discussed in this document (i.e., their 
rankings would be inflated) or some vendors might have additional capabilities relevant to this report 
not considered in Gartner’s analysis (their rankings are undervalued). Gartner’s analysis should only 
be used as a starting point to begin to understand the vendor; detailed understanding of the products 
they offer and the business requirements they can or can’t meet will be more important. This section 
will focus on the leading vendor technologies in each previously described category of big data 
platforms and does not constitute a recommendation of these products. 
 
Before comparing the capabilities and costs of these solutions, it is worth understanding how they are 
similar. Both pure big data solutions (MPP and Hadoop platforms) offer easily scalable, large volumes 
of data storage, distributed computing capabilities for increased performance and analytical 
capabilities, and a robust, fault tolerant system. Each of the IoT platforms will provide a cutting edge 
opportunity to connect to more devices and bring in more data than ever before in a potentially cost 
effective and efficient way. The vast majority of solutions discussed recommend the use of 
inexpensive commodity hardware (with the exception of perhaps Teradata) or cloud-based 
implementations in which the desired resources can be customized to fit an Agency’s needs. Open 
source is generally embraced with each vendor, but flexibility for independent capabilities, tools, 
and languages is a minimum (e.g., Python and R code, NoSQL database options, etc.). Additionally, 
with a focus on open source and flexible solutions, enterprise-level support capabilities are an 
important differentiator for each vendor. While most offer analytical capabilities automatically, it is still 
important to have capabilities within the Transportation Systems Management and Operations 
(TSM&O) agency because outside big data vendors won’t have the domain expertise in transportation 
operations required to provide the full benefit of the tools. 
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Figure 21. Graph. Gartner’s magic quadrant for data warehouse and data management 
solutions for analytics. 
(Source:  Gartner, 2015.) 

Engineered Massively Parallel Processing Platforms 
In MPP databases, data is partitioned across multiple database servers (or nodes) with each node 
having separate memory and processors to process data locally. All communication is via a network 
interconnect. There is no disk-level sharing of data between the processors (i.e., the processors do 
not access information on the same hard drive; explained previously as the “shared-nothing 
architecture”). 

Teradata 
Gartner ranked Teradata in the Leaders Quadrant. Teradata is designed to accommodate large data 
warehouse implementations (e.g., multi-PB solutions) for its customers, which include Apple, Walmart, 
and eBay. (Harris, Derrick, “Why Apple, eBay, and Walmart have some of the biggest data 
warehouses you’ve ever seen,” Accessed May 14, 2016, https://gigaom.com/2013/03/27/why-apple-
ebay-and-walmart-have-some-of-the-biggest-data-warehouses-you’ve-ever-seen/) The figure below 
demonstrates the communication of resources where parsing engines (Pes) manage and optimize 
queries, a Bynet enables internode communication, access module processes (AMP) execute queries 
and manage the database, and disk resources hold the data. Each AMP has full control of its own 
memory, disk, and central processing unit (CPU), demonstrating the shard-nothing architecture. 
Teradata’s solution includes a fully integrated, complete, out-of-the-box solution, including hardware, 
software, network, operating system, and enterprise support. 

https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
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Figure 22. Illustration. Teradata sample architecture. 
(Source:  Windows IT Pro, 2000.) 

In a two-year old study, the International Technology Group (ITG) compared the cost of an IBM 
PureData solution to a Teradata solution, and concluded that the three-year total cost of ownership for 
Teradata was on average 1.5 times more expensive than PureData. (International Technology Group, 
“Cost/Benefit Case for IBM PureData System for Analytics:  Comparing Costs and Time to Value with 
Teradata Data Warehouse Appliance,” Accessed May 13, 2016, 
https://tdwi.org/~/media/5BE30CAF543C4820A7139AAE81DA590F.PDF.) Acquisition of the products 
themselves (this initial upfront costs) were virtually identical (which has converged over the years), but 
maintenance and support, deployment, and personnel cost significantly less for PureData. 
Deployment costs averaged 3.8 times higher for Teradata, and deployment times averaged in the 
10-20-day range for PureData and 100 days-6 months range for Teradata. Related to this, the “lost 
opportunity costs” (money lost due to delays in getting to production) were between 2.9 to 5.3 times 
higher for a Teradata solution. These results are nearly identical to the same analysis published the 
year prior. 

Key Capabilities 

• Teradata has been in the market the longest, has historically been the market leader, and 
provides a honed product capable of scaling significantly. 

• Provides a fully integrated product, including hardware, software, network, operating system 
for a lump sum price with additional yearly support costs added on. 

• Incorporates fully integrated analytical tools, including in-database capabilities to reduce 
unnecessary data movement as well as geospatial, big data tools, visualization, and other 
tools. 

https://tdwi.org/%7E/media/5BE30CAF543C4820A7139AAE81DA590F.PDF
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• Employs a completely shared-nothing architecture (all computing resources are isolated from 
each other and controlled only by the master node) to enable more significant utilization of 
cluster resources (essentially, compute nodes aren’t wasting resources in interactions with 
other nodes). 

Pricing 

Teradata provides a fully integrated solution, including hardware, software, network, and operating 
system and charges for an initial, upfront cost with yearly maintenance and support costs added on. 
Teradata also does not typically recommend commodity hardware options for their solution which will 
increase the initial price substantially, but also needs to be factored into long-term scalability 
constraints. 
 
Direct information regarding costs are unavailable from this vendor; however, based on experience, 
Teradata has historically been the highest in both initial, upfront costs and in total cost of ownership. 
The information from the study mentioned above is two years old and the gap is likely still converging; 
however, the differences are significant enough to consider fully when analyzing options. 

IBM PureData System for Analytics 
Gartner ranked IBM in the Leaders Quadrant. IBM’s Netezza has been rebranded as a part of their 
PureSystems Suite, and is now called PureData System for Analytics—Powered by Netezza. 
PureData still provides the same fully integrated (coming with hardware, software, network, etc.) MPP 
database and still uses the Netezza name for continuity and brand recognition. The figure below 
shows the PureData system in conjunction with Revolution Analytics (a vendor for the open source 
analytical programming language, R), and provides an example of how PureData works. The 
traditional Netezza servers make up the analytical backbone of the solution (hence, “Powered by 
Netezza”) and communicate independently with each shared-nothing disk storage unit and SQL 
processing host (for query management). The Netezza servers contain a snippet processing unit 
(SPU) that functions very similarly to the Teradata AMP to isolate resources and ensure dedicated 
processing power. 
 

 
 

Figure 23. Illustration. IBM PureData sample architecture. 
(Source:  Personal Blog of Dr. Albert Spijkers, 2015.) 
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PureData frequently advertises its speed to market and ability to adapt quickly as primary 
differentiators between competitors. Two studies discussed below comparing IBM’s PureData to 
Teradata and Oracle’s Exadata appear to back these claims up. 
 
As described above, in a two-year old study, the ITG compared the cost of an IBM PureData solution 
to a Teradata solution, and concluded that the three-year total cost of ownership for Teradata was on 
average 1.5 times more expensive than PureData. (International Technology Group, “Cost/Benefit 
Case for IBM PureData System for Analytics:  Comparing Costs and Time to Value with Teradata Data 
Warehouse Appliance,” Accessed May 13, 2016, 
https://tdwi.org/~/media/5BE30CAF543C4820A7139AAE81DA590F.PDF.) Acquisition of the products 
themselves (this initial upfront costs) were virtually identical (which has converged over the years), but 
maintenance and support, deployment, and personnel cost significantly less for PureData. 
Deployment costs averaged 3.8 times higher for Teradata, and deployment times averaged in the 10 
to 20-day range for PureData and 100 days to 6 months range for Teradata. Related to this, the “lost 
opportunity costs” (money lost due to delays in getting to production) were between 2.9 to 5.3 times 
higher for a Teradata solution. These results are nearly identical to the same analysis published the 
year prior. 
 
In another two-year old study, the ITG compared the cost benefits of an IBM PureData solution to an 
Oracle Exadata solution, and concluded that the three-year total cost of ownership for Exadata was on 
average 1.8 times more expensive than PureData. (International Technology Group, “Cost/Benefit 
Case for IBM PureData System for Analytics:  Comparing Costs and Time to Value with Teradata Data 
Warehouse Appliance,” Accessed May 13, 2016, 
https://tdwi.org/~/media/5BE30CAF543C4820A7139AAE81DA590F.PDF.) Every type of cost 
considered (acquisition, maintenance and support, deployment, and personnel) were significantly less 
for PureData. Deployment times ranged between 4 days-3 months for PureData and between 2 
weeks-12 months for Exadata. The “lost opportunity costs” (money lost due to delays in getting to 
production) were on average 3 times higher for an Exadata solution. 

Key Capabilities 

• Provides a fully integrated product, including hardware, software, network, operating system 
for a lump sum price with additional yearly support costs added on. 

• Is known for its speed to deployment and manageable pricing structure (as shown in the 
above reports). 

• Provides the benefits associated with having a wide range of other IBM technologies to 
supplement and possibly customize their solutions in a similar way to how they adapted the 
Netezza database into their new PureData System for Analytics. 

Pricing 

Direct information regarding costs are unavailable from this vendor; however, the two studies 
mentioned above provided insights into the pricing difference between PureData and its competitors 
two years ago. The gap is likely converging; however, they both provided significant enough 
differences to be worth considering when analyzing options. 

https://tdwi.org/%7E/media/5BE30CAF543C4820A7139AAE81DA590F.PDF
https://tdwi.org/%7E/media/5BE30CAF543C4820A7139AAE81DA590F.PDF
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Pivotal Greenplum 
Gartner ranked Pivotal in the Visionaries Quadrant. Pivotal’s Greenplum solution is the only MPP 
database discussed here to provide the option of inexpensive, commodity hardware as a means of 
keeping down costs. The use of commodity hardware (which is more prevalent in Hadoop 
architectures) assumes that hardware failure is inevitable, particularly in big data solutions with up to 
thousands of nodes, and it’s not worth spending the time and money to fix the hardware at the cost of 
lost data and resources. Commodity hardware is therefore easier and cheaper to both scale out with 
and replace when inevitable failures occur. 
 
Greenplum is one of the smaller vendors for MPP appliances, and the only Visionary discussed here. 
However, they were responsible in 2009 for one of the largest data warehouses in the world with 
eBay. According to a blogger who sat down with eBay executives, eBay implemented two massive 
data warehouses using Teradata for one and Greenplum for the other. The Teradata warehouse was 
slightly smaller, but responsible for more varied data and more complex workload management tasks. 
The Greenplum warehouse was intended to hold 6.5PB of user data and 17 trillion records 
with an ingest rate of approximately 50TB per day (Recall from section 1 the total storage of a 
typical agency is expected to require roughly 2PB in 2021 at less than 2TB per day in 2021). The 
following figure shows a sample physical architecture for Greenplum that demonstrates the shared-
nothing architecture discussed previously. 
 

 
 

Figure 24. Illustration. Pivotal Greenplum sample architecture. 
(Source:  TekSlate, 2014.) 
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Key Capabilities 

• Offers multiple deployment options, including the use of user-provided commodity hardware, 
the more typical tightly integrated, optimized for high performance solution required by other 
vendors to bring down costs, or even a virtualized Infrastructure-as-a-Service (IaaS) 
environment (the use of commodity hardware is a clear cost benefit, but may introduce 
interfacing issues due to a lack of hard standards and repeatable implementations). 

• Tends to be more innovative and adaptable given its smaller size and lack of a long-standing 
history and customer base (e.g., use of commodity hardware, use of open source, etc.); this 
could make Pivotal an interesting choice for a DOT looking to stay adaptable or a risky option 
and introduce too many unknowns. 

Pricing 

Greenplum can provide the standard fully integrated solution, including hardware, software, network, 
and operating system and charges for an initial, upfront cost with yearly maintenance and support 
costs added on. Or the customer can purchase commodity hardware to be integrated with the 
purchased software solution and support from Greenplum. 
 
Direct information regarding costs are unavailable from this vendor; however, based on experience, 
Greenplum has historically worked to maintain their low-cost reputation. 

Oracle Exadata 
Gartner ranked Oracle in the Leaders Quadrant. Oracle’s Exadata solution is depicted in the figure 
below with a detailed breakdown of the Oracle software components that comprise it. Worth noting is 
that the complete Oracle solution is composed of both their traditional Real Application Cluster (RAC) 
servers (the two servers above the InfiniBand) and their Exadata solution composed of the Exadata 
cells (the three servers below the InfiniBand) which practice the shared-nothing architecture. Also 
worth noting is that Oracle may not recommend inexpensive, commodity hardware directly, but 
because they offer such a wide range of hardware appliances, the choice is up to the organization as 
to how expensive and resource optimized they want to be. 
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Figure 25. Illustration. Oracle Exadata sample architecture. 
(Source:  UnixArena Blog, “Architecture of Exadata Database Machine—Part 2” 2014.) 

As described above, in a two-year old study, the ITG compared the cost benefits of an IBM PureData 
solution to an Oracle Exadata solution, and concluded that the three-year total cost of ownership for 
Exadata was on average 1.8 times more expensive than PureData. (International Technology Group, 
“Cost/Benefit Case for IBM PureData System for Analytics:  Comparing Costs and Time to Value with 
Teradata Data Warehouse Appliance,” Accessed May 13, 2016, 
https://tdwi.org/~/media/5BE30CAF543C4820A7139AAE81DA590F.PDF.) Every type of cost 
considered (acquisition, maintenance and support, deployment, and personnel) were significantly less 
for PureData. Deployment times ranged between 4 days to 3 months for PureData and between 
2 weeks-12 months for Exadata. The “lost opportunity costs” (money lost due to delays in getting to 
production) were on average 3 times higher for an Exadata solution. 

Key Capabilities 

• Provides a fully integrated product, including hardware, software, network, operating system 
for a lump sum price. 

• Provides a full range of database, data warehousing, and data management technologies to 
supplement and possibly customize their solutions. 

• Provides incredibly transparent pricing structures with a massive suite of options to sort 
through (prices are likely to decrease with discounts). 

https://tdwi.org/%7E/media/5BE30CAF543C4820A7139AAE81DA590F.PDF
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Pricing 

Oracle provides an incredibly detailed and 
transparent pricing structure for organizations to 
customize their solution based on hardware 
resources (e.g., RAM, disk, cores, etc.), software 
products, and support costs. 

Based on the data volume and velocity 
estimates provided in chapters 2 and 3, 
$2,000,000 is a very rough initial estimate for 
the initial cost of an MPP solution. 

A total cost estimate is not possible given the lack of capacity planning and sizing exercises and 
extremely comprehensive pricing structure Oracle provides; however, based on the data volume 
and velocity estimates provided in chapters 2 and 3, $2,000,000 is a very rough initial estimate 
for the initial cost. This would not include the annual support fees (generally about 20 percent of the 
initial, upfront cost, per year). Additionally, the study mentioned above provided insights into the pricing 
difference between Exadata and PureData two years ago. The gap is likely converging; however, they 
both provided significant enough differences to be worth considering when analyzing options. 

Additional pricing details can be found through the following links for hardware and software, 
respectively: 

• http://www.oracle.com/us/corporate/pricing/exadata-pricelist-070598.pdf.

• http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf.

Distributed Hadoop Platforms 
There are three market-leading Hadoop distributions:  Cloudera, Hortonworks, and MapR. These 
distributions can be implemented on-premise or in the cloud as Infrastructure-as-a-Service (IaaS); 
Platform-as-a-Service (PaaS) options will be discussed in the following section (these options were 
briefly discussed in a previous section). An on-premise implementation of Hadoop will be discussed in 
this section. Each distribution provides a mature solution with significant market share, and a very 
similar set of capabilities. Organizations will need to determine exactly what their business needs are 
to properly compare. 

Cloudera Distributed Hadoop 
Gartner ranked Cloudera in the Visionaries Quadrant. Cloudera has been in the Hadoop market 
longer than any other vendor (which explains its high market share), and includes proprietary tools like 
Impala, Cloudera Navigator, Cloudera Manager, and Cloudera Director for providing a more efficient 
query engine and cluster and data management tools. Cloudera does not support several Apache 
products and tends to be slower to upgrade Apache releases; however, they have a more focused, 
user-friendly solution with well-established support capabilities. For example, Cloudera Manager is a 
proprietary cluster management tool that can launch a cluster with a few clicks and allows 
configurations to be managed and changed quickly and easily (both of which take time and more 
technical skills using the command line). 

http://www.oracle.com/us/corporate/pricing/exadata-pricelist-070598.pdf
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
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Figure 26. Illustration. Cloudera sample architecture. 
(Source:  Cloudera, 2016.) 

Key Capabilities 

• Includes proprietary tools like Impala, Cloudera Manager, Cloudera Navigator, and Cloudera 
Director that tend to be more focused on accomplishing specific customer needs (may be 
incredibly useful for DOTs if they decide to develop specifically relevant tools like geospatial 
capabilities and graph stores more heavily over the next few years). 

• Leads the current market share (many third-party vendors would be interested in 
collaborating with a vendor that clearly leads the market share enabling faster development 
and integration with new products). 

Pricing 

A number of editions are available, including a free Express version. The Express version provides 
limited management functionality (which is a key attraction for many customers) and extremely limited 
support capabilities. Several Enterprise versions are available for yearly subscription costs per node 
based on business needs (Basic, Data Engineering, Analytical, etc.). 
 
Direct information regarding costs are unavailable; however, based on experience, $2,600 per node 
per year for base software and support is an initial estimation. 
 
Additional pricing details can be found through the following link:  
http://www.cloudera.com/content/dam/www/static/documents/datasheets/cloudera-enterprise-
datasheet.pdf. 

http://www.cloudera.com/content/dam/www/static/documents/datasheets/cloudera-enterprise-datasheet.pdf
http://www.cloudera.com/content/dam/www/static/documents/datasheets/cloudera-enterprise-datasheet.pdf
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Hortonworks Data Platform 
Gartner ranked Hortonworks in the Visionaries Quadrant. The Hortonworks Data Platform (HDP), is 
the only vendor among the three distributions that is built using entirely open source components and 
gives everything they develop back to the open source community. This enables Hortonworks to have 
faster upgrades with Apache-developed products. HDP also provides a broad range of deployment 
options for Hadoop (e.g., Windows Server to Linux to virtualized Cloud deployments) making it a more 
versatile Hadoop distribution. Ambari is Apache’s and Hortonworks’ response to Cloudera Manager. 
 

 
 

Figure 27. Illustration. Hortonworks sample architecture. 
(Source:  Hortonworks, 2014.) 

Key Capabilities 

• Provides shorter times between upgrades of Apache products and can innovate faster due to 
their 100 percent open source commitment (if Apache or Hortonworks decides to pursue a 
specific new capability or tool, a significant pool of people can work towards the project 
leading to faster capabilities; may be important to DOTs if there are significant gains to be 
made with new capabilities that look like they’re approaching quickly). 

• Provides a wealth of experience-backed expertise due to its creation as a Yahoo! Spin-off; 
Yahoo! Has the largest cluster known in the world at around 40,000 nodes and was one of 
the most innovative and massive contributors to the Apache projects. 

Pricing 

Hortonworks provides three subscription options:  Jumpstart, Enterprise, and Enterprise Plus. 
Jumpstart is a 6-month subscription; Enterprise and Enterprise Plus are yearly subscriptions. Various 
details are provided regarding the level of support that can be expected, including support contacts, 
time until response based on the severity of the problem, hours of direct support, etc. 
Direct information regarding costs are unavailable; however, based on experience, $1,200 per node 
for the basic software, service, and support is an initial estimation. 
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Additional pricing details can be found through the following link:  
http://hortonworks.com/services/support/. 

MapR Converged Data Platform 
Gartner ranked MapR Technologies in the Visionaries Quadrant. MapR employs the most significant 
percentage of proprietary products, including the foundational file system they call MapRFS. MapR 
integrates and expands on many of the most popular Apache tools (e.g., Spark, Drill, and others) in 
addition to commercial tools (e.g., SAS, SAP, and others) to provide a comprehensive and flexible 
solution. 
 

 
Figure 28. Illustration. MapR sample architecture. 

(Source:  MapR, 2015.) 

Key Capabilities 

• Provides extensive proprietary products to supplement the open source components and 
commercial tools that they integrate with; tends to force the issue of vendor lock-in. 

• Considered to have the objectively fastest and most efficient platform, which can become 
extremely important if DOTs are interested in pursuing significant real-time applications (every 
second counts). 

Pricing 

MapR provides two subscription options for their distribution:  Community and Enterprise. The 
community edition provides unlimited, free production use; however, it has limited features and 
capabilities (e.g., high availability, fault tolerance, consistent snapshots, etc.) and offers no commercial 
support. The Enterprise edition provides each of the capabilities they offer, round-the-clock 
commercial support, and support for specific products (e.g., Spark, Hbase, Solr, etc.) for an additional 
subscription cost. 
 
Direct information regarding costs are unavailable; however, based on experience, $2,600 per node 
per year for the base software and support is an initial estimation. 

http://hortonworks.com/services/support/
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Additional pricing details can be found through the following link:  
https://www.mapr.com/products/mapr-distribution-editions. 

Cloud-Based Hadoop Platforms 
The cloud-based Hadoop platform implementations discussed in this section are Platform-as-a-
Service (PaaS) models where the cloud vendor provides a Hadoop computing platform preintegrated 
with existing cloud services. The time it takes to stand up the Hadoop platform is dramatically 
reduced, provisioning can be done in a straightforward manner, and the solution can be scaled easily 
and on an as-needed basis. For the convenience of integration with cloud services, faster 
provisioning, and simple scalability, organizations will sacrifice some flexibility in customization 
options. 
 
The following four platforms discussed are some of the most well-known cloud vendors in the market, 
and they have used each of the Hadoop distributions previously discussed to build a cloud-based 
Hadoop platform. Pricing can be difficult to discuss because there is no standard yardstick from which 
to measure, each vendor has a different process, and the cloud infrastructure is generally sold 
separate from the Hadoop platform. For example, an organization will choose their cloud infrastructure 
base with the resources and at the cost-point they need, and then they will choose the Hadoop PaaS 
component that meets their needs. 
 
Additionally, the Magic Quadrant may not be as applicable for each of these vendors. Several, like 
Microsoft and IBM, can provide services at every level of data warehousing (e.g., on-premises, 
traditional RDBMS, and cloud offerings), while Amazon and Google are limited to the diverse cloud 
offerings they provide. However, if they are on the Magic Quadrant, their ranking will be mentioned 
briefly. 

Amazon Web Services Elastic MapReduce 
Gartner ranked Amazon Web Services (AWS) in the Challengers Quadrant. Amazon is widely known 
for its cloud options and understood to be a market leader, and while the number of nuanced choices 
they have can seem overwhelming for an organization to consider, the takeaway message is that 
AWS will not lack customizable options when the business needs are determined. For example, 
Amazon’s Elastic MapReduce (EMR) clusters can use EC2 instances as virtual Linux servers for the 
master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to 
monitor cluster performance. Additionally, EMR uses the open source Apache distribution of Hadoop 
by default, but allows organizations to use a MapR distribution if that’s what they desire (they do not 
offer Cloudera or Hortonworks distributions). (Amazon Web Services, “Amazon EMR,” Accessed 
May 9, 2016, https://aws.amazon.com/elasticmapreduce/.) 

Key Capabilities 

• Provides interoperability with other Amazon products, including the ability to use different 
offerings for optimized performance of specific functions (e.g., Amazon S3 for storage, 
Amazon EC2 for compute resources, etc.). 

• Provides optimized and transparent pricing models and options available for underlying cloud 
services as well as platform offerings (e.g., high memory options). 

https://www.mapr.com/products/mapr-distribution-editions
https://aws.amazon.com/elasticmapreduce/
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• Is simple and efficient to scale up or down based on current storage needs (e.g., on an hourly 
basis or a seasonal basis given peak driving times of day and year). 

Pricing 

The price of EMR can range from $0.011/hour/node to $0.270/hour/node based on the instance used 
for the Hadoop compute platform (e.g., optimized for memory, general purpose, etc.). However, 
additional cost must be considered for computation and storage resources (e.g., EC2 and S3, 
respectively) and any additional AWS services the business requires. 
 
Additional pricing details can be found through the following link:  
https://aws.amazon.com/elasticmapreduce/pricing/. 

Microsoft Azure HDInsight 
Gartner ranked Microsoft in the Leaders Quadrant. Microsoft’s Azure HDInsight is a PaaS model that 
runs Microsoft’s Hadoop platform, called HDInsight, on their Azure cloud platform. HDInsight uses a 
Hortonworks distribution of Hadoop, and does not provide for the use of any other distributions. Using 
Microsoft’s platform brings increased interoperability with other Microsoft products (which may be 
important for Microsoft-heavy organizations), but lacks flexibility elsewhere (i.e., vendor lock-in). 
(Microsoft Azure, “What is Hadoop in the cloud? An introduction to Hadoop components in HDInsight 
for big data analysis,” Accessed May 9, 2016, https://azure.microsoft.com/en-
us/documentation/articles/hdinsight-hadoop-introduction/.) 

Key Capabilities 

• Provides integration and interoperability with Microsoft products, tools, and other services, 
including Excel and BI tools. 

• Provides organizations the option of letting Microsoft manage more aspects of the 
infrastructure (valuable for organizations particularly concerned about a lack of existing skills; 
less valuable for organizations that rely on maximum flexible control over their environment). 

• Allows the creation of hybrid applications (applications that combine on-premises and cloud-
based tools) as a way of connecting legacy datacenters to the Hadoop computing platform. 

Pricing 

Microsoft’s Azure HDInsight is offered as Standard (an enterprise solution) and Premium (an 
enterprise solution with additional advanced analytical capabilities). The price of a Standard cluster 
can range from $.008/hour/node to $3.04/hour/node, and the price of a Premium cluster can range 
from $.010/hour/node to $3.36/hour/node. The wide range in price is dependent on the computing 
resources each node provides, including primarily RAM, disk, and number of cores. However, the 
prices provided include both the Hadoop platform instances as well as the storage/computation 
resources all-in-one. 
 
Additional pricing details can be found through the following link:  https://azure.microsoft.com/en-
us/pricing/details/hdinsight/. 

https://aws.amazon.com/elasticmapreduce/pricing/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-introduction/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-introduction/
https://azure.microsoft.com/en-us/pricing/details/hdinsight/
https://azure.microsoft.com/en-us/pricing/details/hdinsight/
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IBM SoftLayer BigInsights 
Gartner ranked IBM in the Leaders Quadrant. IBM’s SoftLayer BigInsights provides a PaaS solution 
using IBM’s SoftLayer cloud infrastructure and their proprietary BigInsights Hadoop distribution. IBM 
provides several additional proprietary tools, including the browser-based analytics tool called 
BigSheets and the MPP SQL engine for Hadoop called BigSQL. However, it also lacks flexibility due 
to its restrictive use of IBM proprietary software (i.e., vendor lock-in). (IBM, “Hadoop-as-a-service, big 
data analytics in the cloud,” Accessed May 9, 2016, http://www-03.ibm.com/software/products/en/ibm-
biginsights-on-cloud.) 

Key Capabilities 

• Includes additional proprietary analytical accelerators such as text analytics, machine 
learning, and geospatial analysis, and data mining. 

• Includes additional proprietary Hadoop analytical tools such as Big SQL, BigSheets, and 
Big R. 

Pricing 

Pricing information is not available from this vendor. They primarily sell their services through third-
party agreements and enterprise licenses, and do not provide publically available cost breakdowns. 

Google Cloud Dataproc 
Gartner has not formally ranked Google in the Magic Quadrant for Data Warehouse and Data 
Management Solutions for Analytics. Google was the original creator of the Google File System for 
which Hadoop was founded and continues to be a leader in the field of advanced big data 
applications. Google’s Cloud Dataproc provides increased interoperability across other Google Cloud 
Platform products, including the well-known BigTable, BigQuery, and others. (Google Cloud Platform, 
“Cloud Dataproc,” Accessed May 9, 2016, https://cloud.google.com/dataproc/.) 

Key Capabilities 

• Provides built-in integration with Google’s proprietary products, including Cloud Storage, 
BigQuery, BigTable, Cloud Logging, and Cloud Monitoring. 

• Provides “image versioning” to allow users to choose between bundled versions of Hadoop 
products, including Spark, Pig, Hive, and others (useful when compatibility issues come into 
play; simplifies deployments). 

• Provides tools for developers to manage a cluster multiple ways, including a Web user 
interface (UI), a Google Cloud software development kit (SDK), RESTful Application 
Programming Interfaces (API), and secure shell (SSH) access (managing the cluster includes 
the technical details of managing resources, configuring the platform, and monitoring and 
maintaining system health). 

http://www-03.ibm.com/software/products/en/ibm-biginsights-on-cloud
http://www-03.ibm.com/software/products/en/ibm-biginsights-on-cloud
https://cloud.google.com/dataproc/
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Pricing 

Google’s Dataproc solution is billed based on the underlying resources used. The cost of Dataproc 
itself is $0.01/hour/vCPU used. Total cost of ownership would also need to include the underlying cost 
of the cloud infrastructure (e.g., Google’s compute engine, persistent disk storage, and cloud 
monitoring services). 
 
Additional pricing details can be found in the following location:  
https://cloud.google.com/dataproc/pricing. 

Cloud-Based Internet of Things Platforms 
The cloud-based Internet of Things (IoT) platform is a special type of computational and integration 
platform supporting message collection from a variety of devices and the execution of big data 
analytics to discover patterns and trends. While many companies are beginning to develop IoT 
platforms, the following five were determined to be a representative set of the capabilities on the 
market in spring 2016. 
 
IoT is still a new concept, and the IoT platforms are still evolving to fill the right business and technical 
needs. The platforms listed below provide a very similar set of capabilities at this time, and will likely 
evolve and distance themselves from one another with specific vendors becoming clear market 
leaders in the very near future. Because this report is only a snapshot in time and not intended to 
provide any recommendations at this time, each platform will only briefly be mentioned with a short 
understanding of the most distinguishing factors and price comparison. Additionally, Gartner’s Magic 
Quadrant is not explicitly relevant for these platforms and will not be mentioned here. 

 
 

Figure 29. Illustration. Representation of the Internet of Things. 
(Source:  https://www.robomq.io/, 2016.) 

The image above shows a simplified representation of how connected devices interface with IoT 
gateways to eventually reach a cloud platform for storage, management, and analysis. For the 
purposes of this report, Agencies would be able to connect roadside units (RSUs) and other 
acceptable connected devices such as traffic equipment with sensors, phones through user buy-in 

https://cloud.google.com/dataproc/pricing
https://www.robomq.io/
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apps (e.g., a Boston-based app that detects bad roads through connected travelers’ phone 
movements), etc. (City of Boston, “Street Bump:  Help Improve Your Streets,” Accessed May 13, 
2016, http://www.cityofboston.gov/DoIT/apps/streetbump.asp.) 

Amazon Web Services Internet of Things 
Amazon Web Services (AWS) provides an IoT managed cloud platform to deliver secure and efficient 
communication between edge devices (e.g., sensors, actuators, embedded devices, or smart 
appliances) and the underlying AWS cloud foundation. AWS also has partnered with hardware 
manufacturers like Intel, Texas Instruments, Broadcom and Qualcomm to create starter kits 
compatible with their platform. These starter kits are physical kits with sensors, actuators, and other 
devices designed to help users begin using the IoT platform. (Amazon Web Services, “AWS IoT,” 
Accessed May 9, 2016, https://aws.amazon.com/iot/.) 
 

 
 

Figure 30. Illustration. Amazon Web Services Internet of Things platform sample architecture. 
(Source:  https://paolopatierno.wordpress.com/2015/10/13/an-iot-platforms-match-microsoft-azure-iot-

vs-amazon-aws-iot/, 2015.) 

Pricing 

Amazon charges on a pay-as-you-go model (typical for cloud deployments) with no minimum fees 
and free delivery to other Amazon services (e.g., Amazon S3, Amazon DynamoDB, etc.), for example, 
a big data platform that uses Amazon’s S3 model. Their free tier provides up to 250,000 messages 
per month, and their paid tier provides $5 per 1,000,000 messages. A message is considered 
bidirectional (meaning it costs to both send and receive messages), and a message is in 512 byte 
increments (meaning a 1024 byte message would be billed as two messages). In terms of the 
emerging sources identified in this report, a connected traveler’s daily load of 500KB/day would 
represent perhaps 500 1KB messages, or 1,000 500-byte chunks in Amazon’s pricing structure. The 

http://www.cityofboston.gov/DoIT/apps/streetbump.asp
https://aws.amazon.com/iot/
https://paolopatierno.wordpress.com/2015/10/13/an-iot-platforms-match-microsoft-azure-iot-vs-amazon-aws-iot/
https://paolopatierno.wordpress.com/2015/10/13/an-iot-platforms-match-microsoft-azure-iot-vs-amazon-aws-iot/
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150,000 connected travelers of a typical agency in 2021 would thus cost $750/day for the 
150,000,000 total messages ($274,000 per year). Total cost of ownership also would need to include 
the underlying cost of the cloud infrastructure using Amazon S3 or other offerings. 
 
Additional pricing details can be found through the following link:  https://aws.amazon.com/iot/pricing/. 

Microsoft Azure Internet of Things 
Microsoft Azure’s IoT platform can be used for same general purpose as the AWS; however, in a 
similar vein as Microsoft’s HDInsight platform (though perhaps even more so), Microsoft is capable of 
ensuring an extra degree of interoperability with other Microsoft products. Which is particularly 
important for organizations that rely heavily on Microsoft products. 

 
Figure 31. Illustration. Microsoft Azure Internet of Things sample architecture. 

(Source:  Microsoft, 2016.) 

Pricing 

Microsoft charges on a pay-as-you-go model (typical for cloud deployments) with no cancellation fees 
or upfront costs. They offer three subscription models:  Free, S1, and S2. The Free model offers up to 
8,000 messages at 0.5 KB each per day; the S1 model offers up to 400,000 messages at 4 KB each 
per day for $50 per month, and the S1 model offers up to 6,000,000 messages at 4 KB each per day 
for $500 per month. In terms of the emerging sources identified in this report, a connected traveler’s 
daily load of 500KB/day would represent perhaps 500 1KB messages, or 1,000 4KB chunks in 
Microsoft’s pricing structure. The 150,000 connected travelers of a typical agency in 2021 would 
thus cost $333/day (using the straight-line pricing of 6,000,000 messages for $50/month) for 
the 150,000,000 total messages ($122,000 per year). 
 
Additional pricing details can be found through the following link:  https://azure.microsoft.com/en-
us/pricing/details/iot-hub/. 

https://aws.amazon.com/iot/pricing/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
https://azure.microsoft.com/en-us/pricing/details/iot-hub/
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IBM Watson Internet of Things 
IBM Watson’s IoT platform may distinguish itself from other platforms for Agencies with several 
focused set of automobile industry-related use cases. (IBM, “IBM Watson Internet of Things,” 
Accessed May 9, 2016, http://www.ibm.com/Internet-of-things/.) If IBM can separate itself from the rest 
of the pack in the transportation industry, they may be a vendor worth keeping an eye on in the future. 
 

 
Figure 32. Illustration. IBM Watson sample architecture. 

(Source:  IBM, 2016.) 

Pricing 

IBM charges based on the number of devices connected per month, the amount of data exchanged 
by those devices, and the amount of data stored in historical databases. Up to 20 devices per month, 
100MB of data traffic (equivalent to 50,000 messages) per month, and 1GB of storage per month are 
free with any plan. Total cost of ownership also would need to include the underlying cost of the cloud 
infrastructure using IBM Bluemix. 
 
Direct information regarding costs are unavailable from this vendor. 

Cisco Internet of Things Cloud Connect 
Cisco and Intel both distinguish themselves from other vendors through their deep market experience 
in the “things” of IoT as opposed to their work with cloud offerings. (Cisco, “Internet of Things (IoT),” 
Accessed May 9, 2016, http://www.cisco.com/c/en/us/solutions/Internet-of-things/iot-products.html.) 
This strength could become a serious advantage in the future, or their lack of expertise in cloud 
solutions may be too much for them to overcome. 

http://www.ibm.com/internet-of-things/
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products.html
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Figure 33. Illustration. Cisco Internet of Things sample architecture. 
(Source:  Cisco, 2016.) 

Pricing 

Pricing information is not available from this vendor. They primarily sell their services through third-
party agreements and enterprise licenses, and do not provide publically available cost breakdowns. 

Intel Internet of Things 
As stated before, Intel and Cisco both distinguish themselves from other vendors through their deep 
market experience in the “things” of IoT as opposed to their work with cloud offerings. This strength 
could become a serious advantage in the future, or their lack of expertise in cloud solutions may be 
too much for them to overcome. 
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Figure 34. Illustration. Intel Internet of Things sample architecture. 
(Source:  

https://theiotlearninginitiative.gitbooks.io/internetofthings101/content/documentation/Intel.html, 2016.) 

Pricing 

Pricing information is not available from this vendor. They primarily sell their services through third-
party agreements and enterprise licenses, and do not provide publically available cost breakdowns. 

Pricing Comments 
Many of these products either have very limited information readily and publically available about their 
specific pricing structures or have incredibly detailed and challenging to decipher information 
regarding every possible approach that can be taken. While the transparency of the latter is 
commendable, it unfortunately still doesn’t make it easy to make a direct apples-to-apples comparison 
of any products. 

As much detail as could be found, reasonably interpreted, and assumed to be helpful was included 
about each vendor’s product above. However, additional they generally lacked consistency and 
occasionally relevance and interpretability. To that end, an appendix titled “Big Data Tools and 
Technologies Implementation Considerations” has been attached with a list of questions that are 
extensive though not by any means exhaustive to 1) demonstrate the difficulties in finding the 
information desired; and 2) provide a prelude to the work anticipated in subsequent reports when a 
detailed analysis of alternatives may be performed. 

https://theiotlearninginitiative.gitbooks.io/internetofthings101/content/documentation/Intel.html
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Chapter 8 Summary 

This report is intended to give the reader an understanding of what emerging data sources relevant to 
Transportation Systems Management and Operations (TSM&O) could be available in the next 
10 years and what the data acquisition and storage implications will be. The second objective of the 
report in the context of the overall project, is to raise awareness of the TSM&O practitioner to some of 
the moving parts and terminology of the generic buzz-word “big data” and provide some examples of 
currently available systems and platforms available in the marketplace. Subsequent reports will 
explore further into the implications of these tools to address opportunities and challenges for TSM&O 
applications, architectures for collecting the volumes of data for public Connected Vehicle (CV) 
systems, and directions for integrating Big Data tools and technologies with existing Transportation 
Management Systems. 

While traditional sources of transportation data for TSM&O will remain, emerging data sources, largely 
those from connected travelers, connected vehicles, and connected infrastructure, will represent a 
significant opportunity for Departments of Transportation (DOT) and localities to improve TSM&O 
practices. However, the volume of data will create challenges for DOTs to manage and use it. A single 
traveler will likely contribute 500KB of trajectory-related travel behavior data per day; assuming that 
the Personally Identifiable Information (PII) issues can be suitably addressed for the connected 
traveler and commercial connected vehicles sources. This is a very strong assumption. However, it is 
an issue that existing third-parties that currently provide data to DOTs understand and will likely be 
working towards resolving as they are well aware that this higher-fidelity data source can be of 
considerable value for TSM&O. 

In rough terms, if all data available to an agency through the emerging data sources was consumed 
and stored, the volume of data per day consumed by an agency today of 1TB will more than 
double by 2021 to 2.5TB and be a more than five times higher daily consumption rate of 5.2TB 
by 2026. 5.2TB per day is approximately 60GB per second, or 600Gbps. For comparison, a top-tier 
business access plan from commercial providers in 2016 is typically 150-200 Mbps per connection. 
Many businesses utilize multiple connections to increase total download capacity. In 10 years, it would 
be likely that commercial access plans will offer this level of download capacity to businesses or 
agencies. Acquisition of all of this data will require new methodologies predicated by components of 
the Big Data ecosystem. 

If all of this emerging data is stored, the cumulative storage of a typical agency would be more than 
3 Petabytes in 2021 and 10 Petabytes by 2026. More than 80 percent of the data will be raw Basic 
Safety Messages (BSM) and compressing closed-circuit television (CCTV) images. Even 
compressing CCTV and BSM data sources 100:1 and/or only storing derived analytics or summaries 
will still require on the order of 1 Petabyte of storage in 2021 and 3 Petabytes by 2026. Additional 
strategies to compress and consolidate information from the raw data will be needed as any current 
agency would struggle to justify the costs for this level of storage for the return on investment (ROI) 
that it provides. Some calculations of the comparative benefits versus costs would be of value to 
quantify the value proposition. DOTs also are on a much different procurement cycle than commercial 
businesses, and investments of this nature must last 10+ years, or the yearly subscription costs must 
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be justified and planned for years in advance. Investing in enhanced software capabilities for a typical 
DOT almost certainly means not investing in some other activity, capital project, or equipment 
purchase. 

The data availability and volumes are educated projections with the important caveat that PII issues 
are resolved sufficiently to unlock the sharing of transformative information on travel behaviors with 
public agencies for the benefit of the public. Nonetheless, by any measure, the growth rate of these 
data sources will generate volumes of data that will require new methods and tools to realize their 
value. The volume, variety, velocity, and veracity of connected traveler, connected vehicle, and 
connected infrastructure data will put TSM&O agencies firmly into the realm of “big data.” 
Even without the connected vehicles and connected travelers data, most agencies are not utilizing the 
information they currently collect from infrastructure alone, particularly traffic signal systems, in 
meaningful ways due to limitations in current Information Technology (IT) infrastructure (RDBMS) and 
lack of Big Data tools, experience, and expertise. Perhaps a good first step would be for agencies to 
gain experience with these tools and techniques as an expansion to their current tools and legacy 
systems. 

There is a significant variety of tools and methods available now for data acquisition, marshalling, and 
analysis that are proven in a variety of use cases and markets. Data acquisition and marshalling 
technologies are the most mature of the three primary components; “out of the box” or “plug and play” 
analysis components are continuing to mature in 2016. There is no single best tool, technology, or 
provider for a particular agency or a particular TSM&O application. Rather, the tools and methods 
must be appropriate for the data, sufficiently mature, stable and supported, and within the ability of the 
data analysts to properly use. The two primary categories of currently available commercial 
systems are the massively parallel processing (MPP) and Hadoop-based ecosystem solutions. 
Both approaches are well represented in the marketplace and appear to have the capabilities to 
handle the size and velocity of data for TSM&O purposes by 2021. For example, the Greenplum MPP 
appliance is marketed in 2016 to hold up to 6.5PB at ingestion rates of up to 10TB per day; clearly 
within the requirements of 2PB total storage and 2.5TB/day ingestion rates estimated in chapter 3. 
Costs for these tools and technologies (along with storage) are substantial, relative to their value, and 
this tradeoff will need to be strongly considered by budget-constrained TSM&O agencies. Hadoop is 
mentioned many times in this report as it is such a strong central component of the Big Data world 
and the foundation of almost all commercially available systems outside of the MPP market. The MPP 
also is considered an aging technology since it simply (as far “simply” describes a massively complex 
system of interprocess communications and sophisticated software components) distributes an 
RDBMS across tens, hundreds, or thousands of processors. The Hadoop ecosystem essentially 
builds on top of the MPP concept of parallelization with new ways of organizing information that 
improve speed and responsiveness for processing unstructured information of massive sizes; 
particularly data that is not well suited for the strict ACID rules of RDBMS, such as images, 
documents, music, and so on. 

As time passes, there is no doubt that new and increasingly sophisticated methods and tools will be 
developed to deal with increasingly bigger datasets and analysis suites will become more mature. The 
methods to make sense of these large datasets will require individuals and teams with skill sets that 
span software development, database administration, IT, statistical analysis and modeling, and 
interpersonal communication. Just as importantly, these individuals also must have domain knowledge 
in TSM&O to understand the information, perform meaningful analyses, and effectively communicate 
results. These individuals are now known as data scientists. Just as TSM&O has emerged over the 
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last 20 years as a functional area within DOTs and local agencies, data science will be an important 
area of focus over the next 10. 

As hardware technology becomes ever more powerful and the data sources grow, the cluster of 
commodity processors and data storage devices is replacing the server as the primary unit of 
computing (per the prescient Grace Hopper). DOTs need to understand this paradigm shift as they 
work with their IT departments to plan for new applications of these emerging data source. However, it 
is unrealistic to expect DOTs to have capabilities in these new tools because they are evolving so 
quickly; rather they will need to partner with IT staff, data scientists, and system providers to engineer 
solutions. 



U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  112 

References 

1. U.S. Department of Transportation, ITS Joint Program Office, “Big Data’s Implications for
Transportation Operations:  An Exploration,” Publication No. FHWA-JPO-14-157,
December 2014.

2. McKinsey Global Institute, “Big Data:  The next frontier for innovation, competition and
productivity,” May 2011. Accessed at:  http://www.mckinsey.com/business-functions/business-
technology/our-insights/big-data-the-next-frontier-for-innovation.

3. Kimley-Horn and Associates, Inc., “Traffic Management Centers in a Connected Vehicle
Environment,” TMC Pooled Fund Study, March 2014.

4. U.S. Department of Transportation, ITS Joint Program Office, “Big Data and ITS,” White
Paper, October 2013. Accessed at:
http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final
+Draft+10_2+%282%29.docm.

5. International Transport Forum, “Big Data and Transport:  Understanding and assessing
options, 2015.” Accessed at:  http://www.itf-oecd.org/big-data-and-transport-understanding-
and-assessing-options.

6. U.S. Department of Transportation, ITS Joint Program Office, “Estimate Benefits of
Crowdsourced Data from Social Media,” Publication No. FHWA-JPO-14-165, February 2015.

7. AASHTO, “National Connected Vehicle Field Infrastructure Footprint Analysis,” Publication
No. FHWA-JPO-14-125, June 2014.

8. Pew Research Center, “U.S. Technology Device Ownership 2015,” Accessed May 13, 2016,
http://www.pewInternet.org/2015/10/29/technology-device-ownership-2015.

9. CNN Money, “U.S. cell phones, tablets outnumber Americans—Oct. 12, 2011,” Accessed
May 13, 2016,
http://money.cnn.com/2011/10/12/technology/cellphones_outnumber_americans/index.htm.

10. Zipcar, “Millennials & Technology:  A Survey,” Accessed May 13, 2016,
http://www.slideshare.net/Zipcar_Inc/millennial-slide-share-final-16812323.

11. Frontier Group and U.S. PIRG Education Fund, “Transportation and the New Generation:
Why Young People Are Driving Less and What It Means for Transportation Policy,” Accessed
May 13, 2016,
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Gen
eration%20vUS_0.pdf.

12. Google Play Store, “UDOT Citizen Reports—Android Apps on Google Play,” Accessed May
13, 2016, https://play.google.com/store/apps/details?id=gov.utah.udot.citizenreport.

13. Los Angeles County Metropolitan Transportation Authority (Metro), “Metro Mobile App,”
Accessed May 16, 2016, https://www.metro.net/mobile/metro-mobile-app.

http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation
http://www.mckinsey.com/business-functions/business-technology/our-insights/big-data-the-next-frontier-for-innovation
http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final+Draft+10_2+%282%29.docm
http://connectedvehicle.itsa.wikispaces.net/file/detail/ITS+and+Big+Data+White+Paper+Final+Draft+10_2+%282%29.docm
http://www.itf-oecd.org/big-data-and-transport-understanding-and-assessing-options
http://www.itf-oecd.org/big-data-and-transport-understanding-and-assessing-options
http://www.pewinternet.org/2015/10/29/technology-device-ownership-2015
http://money.cnn.com/2011/10/12/technology/cellphones_outnumber_americans/index.htm
http://www.slideshare.net/Zipcar_Inc/millennial-slide-share-final-16812323
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Generation%20vUS_0.pdf
http://www.uspirg.org/sites/pirg/files/reports/Transportation%20%26%20the%20New%20Generation%20vUS_0.pdf
https://play.google.com/store/apps/details?id=gov.utah.udot.citizenreport
https://www.metro.net/mobile/metro-mobile-app/


References 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  113 

14. World Population Review, “Rio De Janeiro Population 2016––World Population Review,” 
Accessed May 13, 2016, http://worldpopulationreview.com/world-cities/rio-de-janeiro-
population. 

15. PricewaterhouseCoopers, “Connected Car Study 2015:  Racing ahead with autonomous cars 
and digital innovation, 2015,” Accessed at 
http://www.strategyand.pwc.com/reports/connected-car-2015-study. 

16. Oregon DOT, “MyOReGO | A new way to fund roads for all Oregonians,” Accessed May 13, 
2016, http://www.myorego.org. 

17. Texas A&M Transportation Institute, “Strategic Research Program:  Big Data Scan,” Accessed 
May 13, 2016, http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/161505-1.pdf.  

18. HERE, “HERE, automotive companies move forward on car-to-cloud data standard,” 
Accessed July 1, 2016, https://lts.cms.here.com/static-cloud-
content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cl
oud_data_standard.pdf. 

19. AT&T Labs Research, “Enabling Vehicular Safety Applications over LTE Networks,” Accessed 
May 13, 2016, http://web2-
clone.research.att.com/export/sites/att_labs/techdocs/TD_101260.pdf. 

20. IEEE Spectrum, “Autonomous Driving Experts Weigh 5G Cellular Network Against Dedicated 
Short Range Communications,” Accessed May 13, 2016, http://spectrum.ieee.org/cars-that-
think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-
against-shortrange-communications-to-connect-cars. 

21. University of Arizona, Multimodal Intelligent Traffic Signal Systems (MMITSS) Concept of 
Operations, December 2012. Accessed at:  http://www.cts.virginia.edu/wp-
content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf. 

22. Michigan DOT, “VII Data Use Analysis and Processing:  System Requirements Specification,” 
December 2007, Accessed May 13, 2016, 
http://www.michigan.gov/documents/mdot/MDOT_DUAP_SysReq_Final_220099_7.pdf. 

23. Federal Communications Comission, Accessed May 13, 2016, https://apps.fcc.gov/. 

24. U.S. Department of Transportation, Office of the Assistant Secretary for Research and 
Technology, Bureau of Transportation Statistics, “Number of U.S. Aircraft, Vehicles, Vessels, 
and Other Conveyances,” Accessed May 13, 2016, 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_
statistics/html/table_01_11.html.  

25. U.S. Department of Transportation, Office of the Assistant Secretary for Research and 
Technology, Bureau of Transportation Statistics, “Public Road and Street Mileage in the 
United States by Type of Surface(a) (Thousands of miles),” Accessed May 13, 2016, 
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statis
tics/html/table_01_04.html. 

26. U.S. Department of Transportation, Federal Highway Administration, Policy and 
Governmental Affairs, Office of Highway Policy Information, “Highway Statistics 2013:  User’s 
Guide,” Accessed June 27, 2016, http://www.fhwa.dot.gov/policyinformation/statistics/2013. 

http://worldpopulationreview.com/world-cities/rio-de-janeiro-population
http://worldpopulationreview.com/world-cities/rio-de-janeiro-population
http://www.strategyand.pwc.com/reports/connected-car-2015-study
http://www.myorego.org/
http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/161505-1.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
https://lts.cms.here.com/static-cloud-content/Newsroom/290616_HERE_automotive_companies_move_forward_on_car_to_cloud_data_standard.pdf
http://web2-clone.research.att.com/export/sites/att_labs/techdocs/TD_101260.pdf
http://web2-clone.research.att.com/export/sites/att_labs/techdocs/TD_101260.pdf
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars
http://spectrum.ieee.org/cars-that-think/transportation/self-driving/autonomous-driving-experts-weigh-5g-cellular-network-against-shortrange-communications-to-connect-cars
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
http://www.cts.virginia.edu/wp-content/uploads/2014/05/Task2.3._CONOPS_6_Final_Revised.pdf
http://www.michigan.gov/documents/mdot/MDOT_DUAP_SysReq_Final_220099_7.pdf
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_11.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_04.html
http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_transportation_statistics/html/table_01_04.html
http://www.fhwa.dot.gov/policyinformation/statistics/2013


References 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  114 

27. Institute of Transportation Engineers, “National Traffic Signal Report Card, 2012,” Accessed at
http://library.ite.org/pub/e265477a-2354-d714-5147-870dfac0e294.

28. U.S. Department of Transportation, Federal Highway Administration, Freight Management
and Operations, Office of Operations, “Freight Analysis Framework,” Accessed June 27,
2016, http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4.

29. Schieber, Philip, “The Wit and Wisdom of Grace Hopper,” Accessed May 9, 2016,
http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html.

30. Gigaom, “Facebook is collecting your data—500 terabytes a day,” Accessed April 4, 2016,”
https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/.

31. Domo, “Data Never Sleeps 3.0,” Accessed April 4, 2016,
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/.

32. Ghemawat, Sanjay, Gobioff, Howard, and Leung, Shun-Tak, “The Google File System,”
Accessed April 4, 2016,
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-
sosp2003.pdf.

33. Apache, “What is Apache Hadoop?” Accessed April 4, 2016, http://hadoop.apache.org/.

34. Dean, Jeffrey and Ghemawat, Sanjay, “MapReduce:  Simplified Data Processing on Large
Clusters,” Accessed April 4, 2016,
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-
osdi04.pdf.

35. Thomas, Gwen, “Defining Data Governance,” Accessed May 12, 2016,
http://www.datagovernance.com/defining-data-governance/.

36. Nammari, Brian, “IoT, Social Media and their Monster Child called Big Data, What is next?”
Accessed April 4, 2016, https://medium.com/@bnammari/iot-social-media-and-their-monster-
child-called-big-data-what-is-next-899eba9f6b7b#.8rleu1q43.

37. Tepper, Allegra, “How Much Data is Created Every Minute?” Accessed April 5, 2016,
http://mashable.com/2012/06/22/data-created-every-minute/#SAV6YUMJSmq7.

38. Domo, “Data Never Sleeps 2.0,” Accessed April 5, 2016, https://www.domo.com/learn/data-
never-sleeps-2.

39. Federal Highway Administration, “Organizing for Operations,” Accessed May 12, 2016, http://
www.ops.fhwa.dot.gov/plan4ops/focus_areas/organizing_for_op.htm.

40. Olavsrud, Thor, “21 data and analytics trends that will dominate 2016,” Accessed April 5,
2016, http://www.cio.com/article/3023838/analytics/21-data-and-analytics-trends-that-will-
dominate-2016.html.

41. Woodie, Alex, “Why Gartner Dropped Big Data Off the Hype Curve,” Accessed April 6, 2016,
http://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/.

42. Sanjiv, K.R., “Big Data—Moving from the operational to the strategic,” Accessed April 6, 2016,
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-
the-strategic.pdf.

http://library.ite.org/pub/e265477a-2354-d714-5147-870dfac0e294
http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm#faf4
http://www.cs.yale.edu/homes/tap/Files/hopper-wit.html
https://gigaom.com/2012/08/22/facebook-is-collecting-your-data-500-terabytes-a-day/
https://www.domo.com/blog/2015/08/data-never-sleeps-3-0/
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://hadoop.apache.org/
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
http://www.datagovernance.com/defining-data-governance/
https://medium.com/@bnammari/iot-social-media-and-their-monster-child-called-big-data-what-is-next-899eba9f6b7b#.8rleu1q43
https://medium.com/@bnammari/iot-social-media-and-their-monster-child-called-big-data-what-is-next-899eba9f6b7b#.8rleu1q43
http://mashable.com/2012/06/22/data-created-every-minute/#SAV6YUMJSmq7
https://www.domo.com/learn/data-never-sleeps-2
https://www.domo.com/learn/data-never-sleeps-2
http://www.ops.fhwa.dot.gov/plan4ops/focus_areas/organizing_for_op.htm
http://www.cio.com/article/3023838/analytics/21-data-and-analytics-trends-that-will-dominate-2016.html
http://www.cio.com/article/3023838/analytics/21-data-and-analytics-trends-that-will-dominate-2016.html
http://www.datanami.com/2015/08/26/why-gartner-dropped-big-data-off-the-hype-curve/
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf
http://www.wipro.com/documents/Wipro-analytics-big-data-moving-from-the-operational-to-the-strategic.pdf


References 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  115 

43. U.S. Department of Homeland Security, “Open Source Software in Government:  Challenges
and Opportunities,” Accessed April 6, 2016,
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20
Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf.

44. The Open Government Partnership, “Announcing New Open Government Initiatives,”
Accessed June 27, 2016,
https://www.whitehouse.gov/sites/default/files/microsites/ostp/new_nap_commitments_report
_092314.pdf.

45. The White House, Office of the Press Secretary, “Executive Order—Making Open and
Machine Readable the New Default for Government Information,” Accessed June 27, 2016,
https://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-
machine-readable-new-default-government-.

46. U.S. Department of Transportation, Federal Highway Administration, “Open Source
Application Development Portal,” Accessed June 27, 2016, http://www.itsforge.net.

47. U.S. Department of Transportation, Office of the CIO, “Privacy Impact Assessment—Federal
Highway Administration (FHWA) Open Source Application Development Portal,” Accessed
June 27, 2016,
https://cms.dot.gov/sites/dot.gov/files/docs/OSADP__FHWA_PIA_Adjudicated_082514.pdf.

48. Deloitte, “Cognitive analytics:  The three-minute guide,” Accessed April 6, 2016,
http://public.deloitte.com/media/analytics/pdfs/us_da_3min_guide_cognitive_analytics.pdf.

49. Drury, Nicholas and Sarkar, Sandipan, “How Cognitive Computing Impacts Banks and
Financial Markets,” Accessed April 6, 2016, http://www.forbes.com/sites/ibm/2015/11/09/how-
cognitive-computing-impacts-banks-and-financial-markets/#31e622e525e5.

50. International Transport Forum Corporate Partnership Board, “Big Data and Transport:
Understanding and assessing options,” Accessed April 6, 2016, http://www.itf-
oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf.

51. Transportation Research Circular, “Improving Safety Programs Through Data Governance
and Data Business Planning,” Accessed June 27, 2016,
http://onlinepubs.trb.org/onlinepubs/circulars/ec196.pdf.

52. Federal Highway Administration, “Data Governance Plan Volume 1:  Data Governance
Primer,” Accessed May 14, 2016, https://www.fhwa.dot.gov/datagov/.

53. GetInData, “Geospatial analytics on Hadoop,” Accessed April 7, 2016,
http://getindata.com/blog/post/geospatial-analytics-on-hadoop/.

54. IDC, “IDC Reveals Worldwide Big Data and Analytics Predictions for 2015,” Accessed April 7,
2016, http://www.idc.com/home.jsp.

55. Rossi, Ben, “Top 8 trends for big data in 2016,” Accessed April 7, 2016,
http://www.information-age.com/technology/information-management/123460615/top-8-
trends-big-data-2016.

56. IT Business Edge, “Ten Reasons Why OpenStack Will Rule the Enterprise,” Accessed April 7,
2016, http://www.itbusinessedge.com/slideshows/ten-reasons-why-openstack-will-rule-the-
enterprise.html.

https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.dhs.gov/sites/default/files/publications/Open%20Source%20Software%20in%20Government%20%E2%80%93%20Challenges%20and%20Opportunities_Final.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/new_nap_commitments_report_092314.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/new_nap_commitments_report_092314.pdf
https://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
https://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-
http://www.itsforge.net/
https://cms.dot.gov/sites/dot.gov/files/docs/OSADP__FHWA_PIA_Adjudicated_082514.pdf
http://public.deloitte.com/media/analytics/pdfs/us_da_3min_guide_cognitive_analytics.pdf
http://www.forbes.com/sites/ibm/2015/11/09/how-cognitive-computing-impacts-banks-and-financial-markets/#31e622e525e5
http://www.forbes.com/sites/ibm/2015/11/09/how-cognitive-computing-impacts-banks-and-financial-markets/#31e622e525e5
http://www.itf-oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf
http://www.itf-oecd.org/sites/default/files/docs/15cpb_bigdata_0.pdf
http://onlinepubs.trb.org/onlinepubs/circulars/ec196.pdf
https://www.fhwa.dot.gov/datagov/
http://getindata.com/blog/post/geospatial-analytics-on-hadoop/
http://www.idc.com/home.jsp
http://www.information-age.com/technology/information-management/123460615/top-8-trends-big-data-2016
http://www.information-age.com/technology/information-management/123460615/top-8-trends-big-data-2016
http://www.itbusinessedge.com/slideshows/ten-reasons-why-openstack-will-rule-the-enterprise.html
http://www.itbusinessedge.com/slideshows/ten-reasons-why-openstack-will-rule-the-enterprise.html


References 

 
U.S. Department of Transportation 

Office of the Assistant Secretary for Research and Technology 
Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  116 

57. InformationWeek, “5 Early Cloud Adopters in Federal Government,” Accessed April 7, 2016, 
http://www.informationweek.com/government/cloud-computing/5-early-cloud-adopters-in-
Federal-government/d/d-id/1315911. 

58. General Services Administration, “Cloud IT Services,” Accessed April 7, 2016, 
http://www.gsa.gov/portal/content/190333.  

59. Rouse, Margaret, “software-defined storage,” Accessed April 7, 2016, 
http://searchsdn.techtarget.com/definition/software-defined-storage. 

60. Vekiarides, Laz, “5 bitter truths about software-defined storage,” Accessed April 7, 2016, 
http://www.infoworld.com/article/2997239/storage/5-bitter-truths-about-software-defined-
storage.html. 

61. Deloitte, “Data scientists:  The three-minute guide,” Accessed April 6, 2016, 
http://public.deloitte.com/media/analytics/pdfs/us_ba_Deloitte3minDatascientist_021813.pdf.  

62. North Carolina State University Institute for Advanced Analytics, “Degree Programs in 
Analytics and Data Science,” Accessed May 14, 2016, 
http://analytics.ncsu.edu/?page_id=4184.  

63. Huddleston, Greg, “Cognitive Analytics Is Helping To Reduce Roadway Fatalities in 
Tennessee,” Accessed June 27, 2016, http://www.forbes.com/sites/ibm/2016/04/28/cognitive-
analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#18d7aded3dad.  

64. Holecy, Miro, “Cognitive Computing Can Help to Meet Citizens’ Expectations from 
Transportation Services,” Accessed April 7, 2016, http://insights-on-
business.com/government/cognitive-computing-transportation/.  

65. Farber, Dan, “Twitter hits 400 million tweets per day, mostly mobile,” Accessed May 9, 2016, 
http://www.cnet.com/news/twitter-hits-400-million-tweets-per-day-mostly-mobile/.  

66. Pagliery, Jose, “Half of American adults hacked this year,” Accessed May 14, 2016, 
http://money.cnn.com/2014/05/28/technology/security/hack-data-breach/.  

67. Stonebraker, Michael, “The Case for Shared Nothing,” Accessed June 27, 2016, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.5370&rep=rep1&type=pdf.  

68. DB-Engines, “System Properties Comparison Netezza vs. Oracle vs. Teradata,” Accessed 
May 12, 2016, http://db-engines.com/en/system/Netezza%3Boracle%3Bteradata. 

69. Paret, Michelle, “Using the mean in Data Analysis:  It’s Not Always a Slam-Dunk,” Accessed 
April 5, 2016, http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-
slam-dunk.  

70. Harris, Derrick, “Why Apple, eBay, and Walmart have some of the biggest data warehouses 
you’ve ever seen,” Accessed May 14, 2016, https://gigaom.com/2013/03/27/why-apple-ebay-
and-walmart-have-some-of-the-biggest-data-warehouses-you’ve-ever-seen/.  

71. International Technology Group, “Cost/Benefit Case for IBM PureData System for Analytics:  
Comparing Costs and Time to Value with Teradata Data Warehouse Appliance,” Accessed 
May 13, 2016, https://tdwi.org/~/media/5BE30CAF543C4820A7139AAE81DA590F.PDF.  

72. Amazon Web Services, “Amazon EMR,” Accessed May 9, 2016, 
https://aws.amazon.com/elasticmapreduce/.  

http://www.informationweek.com/government/cloud-computing/5-early-cloud-adopters-in-federal-government/d/d-id/1315911
http://www.informationweek.com/government/cloud-computing/5-early-cloud-adopters-in-federal-government/d/d-id/1315911
http://www.gsa.gov/portal/content/190333
http://searchsdn.techtarget.com/definition/software-defined-storage
http://www.infoworld.com/article/2997239/storage/5-bitter-truths-about-software-defined-storage.html
http://www.infoworld.com/article/2997239/storage/5-bitter-truths-about-software-defined-storage.html
http://public.deloitte.com/media/analytics/pdfs/us_ba_Deloitte3minDatascientist_021813.pdf
http://analytics.ncsu.edu/?page_id=4184
http://www.forbes.com/sites/ibm/2016/04/28/cognitive-analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#18d7aded3dad
http://www.forbes.com/sites/ibm/2016/04/28/cognitive-analytics-is-helping-to-reduce-roadway-fatalities-in-tennessee/#18d7aded3dad
http://insights-on-business.com/government/cognitive-computing-transportation/
http://insights-on-business.com/government/cognitive-computing-transportation/
http://www.cnet.com/news/twitter-hits-400-million-tweets-per-day-mostly-mobile/
http://money.cnn.com/2014/05/28/technology/security/hack-data-breach/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.5370&rep=rep1&type=pdf
http://db-engines.com/en/system/Netezza%3BOracle%3BTeradata
http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-slam-dunk
http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-slam-dunk
https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
https://gigaom.com/2013/03/27/why-apple-ebay-and-walmart-have-some-of-the-biggest-data-warehouses-youve-ever-seen/
https://tdwi.org/%7E/media/5BE30CAF543C4820A7139AAE81DA590F.PDF
https://aws.amazon.com/elasticmapreduce/


References 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  117 

73. Microsoft Azure, “What is Hadoop in the cloud? An introduction to Hadoop components in
HDInsight for big data analysis,” Accessed May 9, 2016, https://azure.microsoft.com/en-
us/documentation/articles/hdinsight-hadoop-introduction/.

74. IBM, “Hadoop-as-a-service, big data analytics in the cloud,” Accessed May 9, 2016,
http://www-03.ibm.com/software/products/en/ibm-biginsights-on-cloud.

75. Google Cloud Platform, “Cloud Dataproc,” Accessed May 9, 2016,
https://cloud.google.com/dataproc/.

76. City of Boston, “Street Bump:  Help Improve Your Streets,” Accessed May 13, 2016,
http://www.cityofboston.gov/DoIT/apps/streetbump.asp.

77. Amazon Web Services, “AWS IoT,” Accessed May 9, 2016, https://aws.amazon.com/iot/.

78. IBM, “IBM Watson Internet of Things,” Accessed May 9, 2016, http://www.ibm.com/Internet-
of-things/.

79. Cisco, “Internet of Things (IoT),” Accessed May 9, 2016,
http://www.cisco.com/c/en/us/solutions/Internet-of-things/iot-products.html.

https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-introduction/
https://azure.microsoft.com/en-us/documentation/articles/hdinsight-hadoop-introduction/
http://www-03.ibm.com/software/products/en/ibm-biginsights-on-cloud
https://cloud.google.com/dataproc/
http://www.cityofboston.gov/DoIT/apps/streetbump.asp
https://aws.amazon.com/iot/
http://www.ibm.com/internet-of-things/
http://www.ibm.com/internet-of-things/
http://www.cisco.com/c/en/us/solutions/internet-of-things/iot-products.html


Appendix A. List of Acronyms 

U.S. Department of Transportation 
Office of the Assistant Secretary for Research and Technology 

Intelligent Transportation Systems Joint Program Office 

Integrating Emerging Data Sources into Operational Practice—State of the Practice Review |  118 

APPENDIX A.   List of Acronyms 
511 DOT Branded Traveler Information Service 
aaS As-a-service 
ACID Atomicity, Consistency, Isolation, and Durability 
AMP Access Module Process 
ASCT Adaptive Signal Control Technology 
AWS Amazon Web Services 
BSM Basic Safety Message 
C2F Center-to-field 
CCTV Closed-Circuit Television 
COTS Commercial-off-the-shelf 
CRM Customer Relationship Management 
CV Connected Vehicle 
CVPD Connected Vehicle Pilot Deployment 
DHS Department of Homeland Security 
DMS Dynamic Message Sign 
DOT Department of Transportation 
DSRC Dedicated Short Range Communications 
ESS Environmental Sensor Station 
ETL Extract/Transform/Load 
FedRAMP Federal Risk and Authorization Management Program 
GFS Google File System 
GIS Geographic Information Systems 
GSA General Services Administration 
HDFS Hadoop Distributed File System 
HDP Hortonworks Data Platform 
IaaS Infrastructure-as-a-Service 
ICM Integrated Corridor Management 
IDC International Data Corporation 
IoT Internet of Things 
IP Internet Protocol 
IT Internet Technology 
ITG International Technology Group 
LCS Lane Control Signal 
LiDAR Light Detection and Ranging 
MAC Media Access Control 
MPP Massively Parallel Processing 
MS Master of Science 
MSA Master of Science in Analytics 
MSDS Master of Science in Data Science 
NCSU North Carolina State University 
NHTSA National Highway Traffic Safety Administration 
NOCoE National Operations Center of Excellence 
NoSQL Not Only SQL 
NTCIP National Transportation Communications for ITS Protocol 
OBU On Board Unit 
OEM Original Equipment Manufacturer 
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OMB Office of Management and Budget 
OSADP Open Source Application Development Portal 
OSS Open Source Software 
PaaS Platform-as-a-Service 
PDM Probe Data Message 
PE Parsing Engine 
PeMS Performance Monitoring System 
PII Personally Identifiable Information 
PPP Public-Private-Partnership 
PTZ Pan-tilt-zoom 
RAID Redundant Array of Independent Disks 
RDBMS Relational Database Management System 
RFID Radio Frequency Identification 
RITIS Regional Integrated Transportation Information System 
RSU Roadside Unit 
RWIS Road Weather Information Systems 
SaaS Software-as-a-Service 
SCMS Security Credential Management System 
SDK Software Development Kit 
SDS Software-Defined Storage 
SNMP Simple Network Management Protocol 
SPU Snippet Processing Unit 
SRM Signal Request Message 
SSH Secure Shell 
THP Tennessee Highway Patrol 
TITAN Tennessee Integrated Traffic Analysis Network 
TMC Traffic Management Center 
TSM&O Transportation Systems Management and Operations 
UDOT Utah Department of Transportation 
U.S. DOT U.S. Department of Transportation 
V2I Vehicle to Infrastructure 
V2V Vehicle to Vehicle 
VDOT Virginia Department of Transportation 
VDS Vehicle Detection Stations 
VII Vehicle Infrastructure Integration 
VM Virtual Machine 
VSL Variable Speed Limits 
WAVE Wireless Access in Vehicular Environment 
WSM WAVE Short Message 
YARN Yet Another Resource Negotiator 
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APPENDIX B.   Solution Implementation 
Considerations 
Given the wide range of functional capabilities of big data solutions currently on the market, it is very 
difficult to make concrete, scalable, and universal recommendations or assessments on these 
solutions in such a manner that will address the needs of the majority of Transportation Systems 
Management and Operations (TSM&O) organizations. With such overarching considerations as 
budget, scale, user needs, and talent to grapple with, the process of determining which big data 
solution should be deployed is a process and not an event. The questions below were drafted with the 
intention of guiding the decisionmaking process an Agency may have in order to define its big data 
needs before it works to solicit vendors. 

These questions are intended to be representative, thought-provoking, and extensive, but not 
exhaustive. More will likely be developed and adapted based on the results of the Task orders to 
follow. 

• Preplanning

• What is/are the problem(s) you seek to address?

• What is your target State?

• What is your preliminary budget?

• Are you comfortable with open source products, or do you prefer commercial-off-the-shelf
(COTS) products?

• What are your current barriers to adoption?

• At what level of maturity would you classify your organization’s technical capabilities?

• Will your solution be built, managed, and maintained by internal staff, contractors, or a
combination of the two?

• What are you interested in doing with your current hardware, software, etc.?

• Acquisition

• Where does your data currently come from?

• Are you interested in acquiring any new data sources?

• How much data will you be ingesting?

• What format(s) is/are this data in?

• What tools will you ingest it?

• Marshalling

• Where do you plan on hosting your data, locally or in the cloud?

• Will the data need to be preprocessed in a specific way (e.g., extract/transform/load
(ETL), normalization, merging, imputation, etc.)?
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• How often do you anticipate needing to scale your solution up or down?

• What level of latency are you comfortable with in accessing the data?

• Will your data sources provide you with structured, unstructured, and/or semi-structured
data?

• How long will the data reside in your solution?

• What are your organization’s security and data governance standards for the data
collected, for example, where does the data need to go when you’re finished with it?

• What is your archival procedure and governance strategy?

• What is the acceptable loss in functionality/availability of your system?

• What is the criticality of data loss, for example will your solution be a system of record for
any data?

• Analysis

• What are the current languages, analyses, and tools/technologies are you currently
using?

• How complex are your current analyses and how frequently do you currently process
data?

• What analytical and programming languages are you interested in using (e.g., Java,
SAS, R, Python, Scala, etc.)?

• What analytical skills are you interested in expanding or willing to expand to?

• How advanced will your data analysis procedures be (e.g., machine learning, natural
language processing, etc.)?

• Do you intend to perform media (e.g., audio, video, imagery, etc.) analysis, text analysis,
or a combination of both?

• Do you want to maintain manual or automated control over your analytical algorithms and
procedures?

• How quickly do you need to perform certain analyses (e.g., real-time, 24-hour cycles,
etc.)?

• What is the criticality for interruption of analyses, for example how mission critical are the
analyses you are performing?

• Action

• What do you know about your end users (e.g., their challenges, technical skills, etc.)?

• What is the intended experience for your end user?

• What are the desired outcomes of the end user’s tasks (e.g., will they impact other
aspects of the organization or other users)?

• What questions do they seek to answer, and how frequently do they seek to answer
them?
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• Where will your users access the data (e.g., local client or through the Web)?

• What new software or tools will your users need?

• What is the criticality if your end users can’t perform their tasks?

• To what extent would you enable the end user to manipulate the data, if at all?

• General maintenance and security

• What is your enterprise’s current inventory of hardware and software?

• Would you prefer a platform with onsite technical support, or are you interested in
outsourcing much of the support capabilities?

• How sensitive is the data you’re interested in using and how will you control and restrict
access?

• What regulations and standards does your solution need to meet?

• How frequently will you need data and product lifecycles to reset?

• How rigorous of a backup and recovery process will you require?
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